The Filling Problem in the Cube

被引:0
作者
Dominic Dotterrer
机构
[1] University of Chicago,Department of Mathematics
[2] University of Toronto,undefined
来源
Discrete & Computational Geometry | 2016年 / 55卷
关键词
Combinatorial geometry; Isoperimetry;
D O I
暂无
中图分类号
学科分类号
摘要
We prove an isoperimetric inequality for filling cellular Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2$$\end{document}-cycles in a high-dimensional cube with cellular chains. In addition, we provide a family of cubical cellular cycles for which the exponent in the inequality is optimal.
引用
收藏
页码:249 / 262
页数:13
相关论文
共 26 条
  • [1] Bárány I(1982)A generalization of Carathéodory’s theorem Discrete Math. 40 141-152
  • [2] Bernstein AJ(1967)Maximally connected arrays on the SIAM J. Appl. Math. 15 1485-1489
  • [3] Boros E(1984)-cube Geom. Dedicata 17 69-77
  • [4] Füredi Z(2012)The number of triangles covering the center of an J. Topol. Anal. 4 499-514
  • [5] Dotterrer D(1960)-set Publ. Math. Inst. Hung. Acad. Sci 5 17-61
  • [6] Kahle M(1979)Coboundary expanders Comput. Math. Appl. 5 33-39
  • [7] Erdős Paul(1960)On the evolution of random graphs Ann. Math. 72 458-520
  • [8] Rényi A(1983)Evolution of the J. Differ. Geom. 18 1-147
  • [9] Erdős P(2010)-cube Geom. Funct. Anal. 20 416-526
  • [10] Spencer J(2006)Normal and integral currents Geom. Dedicata 123 113-129