Simulation of the Plasma Density Evolution during Electron Cyclotron Resonance Heating at the T-10 Tokamak

被引:0
|
作者
Yu. N. Dnestrovskij
V. A. Vershkov
A. V. Danilov
A. Yu. Dnestrovskij
V. N. Zenin
S. E. Lysenko
A. V. Melnikov
D. A. Shelukhin
G. F. Subbotin
S. V. Cherkasov
机构
[1] National Research Center “Kurchatov Institute,
[2] ”,undefined
来源
Plasma Physics Reports | 2018年 / 44卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In ohmically heated (OH) plasma with low recycling, an improved particle confinement (IPC) mode is established during gas puffing. However, after gas puffing is switched off, this mode is retained only for about 100 ms, after which an abrupt phase transition into the low particle confinement (LPC) mode occurs in the entire plasma cross section. During such a transition, energy transport due to heat conduction does not change. The phase transition in OH plasma is similar to the effect of density pump-out from the plasma core, which occurs after electron cyclotron heating (ECH) is switched on. Analysis of the measured plasma pressure profiles in the T-10 tokamak shows that, after gas puffing in the OH mode is switched off, the plasma pressure profile in the IPC stage becomes more peaked and, after the peakedness exceeds a certain critical value, the IPC-LPC transition occurs. Similar processes are also observed during ECH. If the pressure profile is insufficiently peaked during ECH, then the density pump-out effect comes into play only after the critical peakedness of the pressure profile is reached. In the plasma core, the density and pressure profiles are close to the corresponding canonical profiles. This allows one to derive an expression for the particle flux within the canonical profile model and formulate a criterion for the IPC-LPC transition. The time evolution of the plasma density profile during phase transitions was simulated for a number of T-10 shots with ECH and high recycling. The particle transport coefficients in the IPC and LPC phases, as well as the dependences of these coefficients on the ECH power, are determined.
引用
收藏
页码:1 / 17
页数:16
相关论文
共 50 条
  • [1] Simulation of the Plasma Density Evolution during Electron Cyclotron Resonance Heating at the T-10 Tokamak
    Dnestrovskij, Yu N.
    Vershkov, V. A.
    Danilov, A. V.
    Dnestrovskij, A. Yu
    Zenin, V. N.
    Lysenko, S. E.
    Melnikov, A. V.
    Shelukhin, D. A.
    Subbotin, G. F.
    Cherkasov, S. V.
    PLASMA PHYSICS REPORTS, 2018, 44 (01) : 1 - 17
  • [2] PLASMA-HEATING AT THE ELECTRON-CYCLOTRON RESONANCE IN THE T-10 TOKAMAK
    ALIKAEV, VV
    AGANOV, LI
    ARSENEV, YI
    BERLIZOV, AB
    BOGDANOV, SD
    BORSHEGOVSKII, AA
    BUZANKIN, VV
    VASIN, NL
    VERTINOROKH, AN
    VINOGRADOVA, ND
    VLASOV, SN
    GEGECHKORI, NM
    GORBUNOV, EP
    DOCHENKOV, AS
    ESINCHUK, YV
    EFREMOV, SL
    ZAVERYAEV, VS
    KISLOV, AY
    KONDRATEV, AA
    KURBATOV, VI
    LUKYANOV, SY
    MAKSIMOV, YS
    NOTKIN, GE
    ORLOV, VB
    PIMENOV, AB
    PONOV, IA
    RAZUMOVA, KA
    STRELKOV, VS
    TARAKANOV, AV
    USOV, VG
    FLYAGIN, VA
    KHROMKOV, IN
    SHEGLOV, DA
    JETP LETTERS, 1982, 35 (03) : 140 - 144
  • [3] Simulation of plasma density evolution in the T-10 tokamak
    Dnestrovskij, Yu. N.
    Vershkov, V. A.
    Danilov, A. V.
    Dnestrovskij, A. Yu.
    Zenin, V. N.
    Lysenko, S. E.
    Melnikov, A. V.
    Shelukhin, D. A.
    Subbotin, G. F.
    Cherkasov, S. V.
    PLASMA PHYSICS REPORTS, 2016, 42 (03) : 191 - 209
  • [4] Simulation of plasma density evolution in the T-10 tokamak
    Yu. N. Dnestrovskij
    V. A. Vershkov
    A. V. Danilov
    A. Yu. Dnestrovskij
    V. N. Zenin
    S. E. Lysenko
    A. V. Melnikov
    D. A. Shelukhin
    G. F. Subbotin
    S. V. Cherkasov
    Plasma Physics Reports, 2016, 42 : 191 - 209
  • [5] Time evolution of the ion temperature in the T-10 tokamak during simultaneous pellet injection and electron-cyclotron resonance heating
    Yu. V. Gott
    Yu. D. Pavlov
    A. A. Borshchagovskiĭ
    E. P. Gorbunov
    M. M. Dremin
    O. V. Ishevskiĭ
    A. Ya. Kislov
    S. V. Krylov
    V. V. Matveev
    V. V. Prut
    I. N. Roĭ
    D. V. Ryzhakov
    Yu. V. Skosyrev
    V. M. Trukhin
    A. V. Khramenkov
    V. V. Chistyakov
    Plasma Physics Reports, 2007, 33 : 969 - 973
  • [6] Time evolution of the ion temperature in the T-10 tokamak during simultaneous pellet injection and electron-cyclotron resonance heating
    Gott, Yu. V.
    Pavlov, Yu. D.
    Borshchagovskii, A. A.
    Gorbunov, E. P.
    Dremin, M. M.
    Ishevskii, O. V.
    Kislov, A. Ya.
    Krylov, S. V.
    Matveev, V. V.
    Prut, V. V.
    Roi, I. N.
    Ryzhakov, D. V.
    Skosyrev, Yu. V.
    Trukhin, V. M.
    Khramenkov, A. V.
    Chistyakov, V. V.
    PLASMA PHYSICS REPORTS, 2007, 33 (12) : 969 - 973
  • [7] Comparison of Plasma Heating at First and Second Electron Cyclotron Harmonics in the T-10 Tokamak
    Yu. N. Dnestrovskij
    A. V. Danilov
    A. Yu. Dnestrovskij
    L. A. Klyuchnikov
    S. E. Lysenko
    A. V. Melnikov
    A. R. Nemets
    M. R. Nurgaliev
    G. F. Subbotin
    N. A. Soloviev
    A. V. Sushkov
    D. Yu. Sychugov
    S. V. Cherkasov
    Plasma Physics Reports, 2020, 46 : 477 - 489
  • [8] Comparison of Plasma Heating at First and Second Electron Cyclotron Harmonics in the T-10 Tokamak
    Dnestrovskij, Yu. N.
    Danilov, A. V.
    Dnestrovskij, A. Yu.
    Klyuchnikov, L. A.
    Lysenko, S. E.
    Melnikov, A. V.
    Nemets, A. R.
    Nurgaliev, M. R.
    Subbotin, G. F.
    Soloviev, N. A.
    Sushkov, A. V.
    Sychugov, D. Yu.
    Cherkasov, S. V.
    PLASMA PHYSICS REPORTS, 2020, 46 (05) : 477 - 489
  • [9] BEHAVIOR OF THE ION TEMPERATURE DURING ELECTRON-CYCLOTRON HEATING IN THE T-10 TOKAMAK
    BAGDASAROV, AA
    BEREZOVSKII, EL
    EFREMOV, SL
    ZAVERYAEV, VS
    MEDVEDEV, AA
    JETP LETTERS, 1985, 41 (07) : 355 - 357
  • [10] Restoration of the plasma discharge during density limit disruptions in the T-10 tokamak using electron cyclotron heating and ohmic power supply system
    Savrukhin, P. V.
    Shestakov, E. A.
    PHYSICS OF PLASMAS, 2016, 23 (11)