共 39 条
[21]
Weyl Group q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\varvec{q}}$$\end{document}-Kreweras Numbers and Cyclic Sieving
[J].
Annals of Combinatorics,
2018, 22 (4)
:819-874
[22]
Strict \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Pi^1_1}$$\end{document}-reflection in bounded arithmetic
[J].
Archive for Mathematical Logic,
2010, 49 (1)
:17-34
[23]
Compression and reduction of N∗1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N*1$$\end{document} states by unitary matrices
[J].
Quantum Information Processing,
2022, 21 (2)
[24]
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathsf{\sqrt{3}}$\end{document} linear structures in the Te/Ni(111) system
[J].
The European Physical Journal B - Condensed Matter and Complex Systems,
2004, 38 (1)
:111-115
[25]
Second-order quantum argument shifts in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Ugl_d$$\end{document}
[J].
Theoretical and Mathematical Physics,
2024, 220 (2)
:1294-1303
[26]
Categorification of Wedderburn’s basis for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{C}}[S_{n}]$$\end{document}
[J].
Archiv der Mathematik,
2008, 91 (1)
:1-11
[27]
Exact G2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{\mathbf{2}}$$\end{document}-structures on compact quotients of Lie groups
[J].
Annali di Matematica Pura ed Applicata (1923 -),
2023, 202 (2)
:901-925
[28]
The Quantum Spaces of Certain Graded Algebras Related to 𝖘𝖑(2,𝕜)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathfrak {sl}(2,\Bbbk )$\end{document}
[J].
Algebras and Representation Theory,
2020, 23 (4)
:1781-1796
[29]
Local and 2-Local 12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{1}{2}$$\end{document}-Derivations on Finite-Dimensional Lie Algebras
[J].
Results in Mathematics,
2024, 79 (5)
[30]
On Classification of (n+5)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(n+5)$$\end{document}-Dimensional Nilpotent n-Lie Algebras of Class Two
[J].
Bulletin of the Iranian Mathematical Society,
2019, 45 (4)
:939-949