A large family of linear positive operators

被引:0
作者
Vijay Gupta
机构
[1] Netaji Subhas University of Technology,Department of Mathematics
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2020年 / 69卷
关键词
Linear positive operators; Convergence; Difference of operators; Modulus of continuity; 30E10; 41A25; 41A35;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we introduce a general family of linear positive operators, which contains a wide range of linear positive operators as special cases viz. Baskakov–Durrmeyer type operators, Phillips operators, Bernstein–Durrmeyer polynomials, Srivastava–Gupta operators, Baskakov–Szász type operators, Szász-Beta type operators, Lupaş-Beta operators and Lupaş–Szász type operators etc. We also find the difference estimate between such operators and the Miheşan operators.
引用
收藏
页码:701 / 709
页数:8
相关论文
共 34 条
[1]  
Acu AM(2016)New estimates for the differences of positive linear operators Numer. Algorithms 73 775-789
[2]  
Rasa I(1999)On a sequence of linear and positive operators Facta Univ. (Niś) Ser. Math. Inform. 14 41-65
[3]  
Agratini O(2001)Linear combination of a new sequence of linear positive operators Revista de la U.M.A 42 57-251
[4]  
Agrawal PN(1957)An example of a sequence of linear positive operators in the space of continuous functions Dokl. Akad. Nauk SSSR 113 249-642
[5]  
Mohammad AJ(2005)Direct and inverse estimates for Phillips type operators J. Math. Anal. Appl. 303 627-203
[6]  
Baskakov VA(2013)Certain new classes of Durrmeyer type operators Appl. Math. Comput. 225 195-14
[7]  
Finta Z(2018)On difference of operators with applications to Szász type operators Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 1 e1018-412
[8]  
Gupta V(2019)General estimates for the difference of operators Comput. Math. Methods 1 9-21
[9]  
Govil NK(2018)Differences of operators of Lupaş type Constr. Math. Anal. 8 399-7
[10]  
Gupta V(2003)Simultaneous approximation by summation integral type operators J. Nonlinear Funct. Anal. Appl. 7 9-203