Cesàro sums and algebra homomorphisms of bounded operators

被引:0
作者
Luciano Abadias
Carlos Lizama
Pedro J. Miana
M. Pilar Velasco
机构
[1] Universidad de Zaragoza,Departamento de Matemáticas, Instituto Universitario de Matemáticas y Aplicaciones
[2] Universidad de Santiago de Chile,Departamento de Matemática y Ciencia de la Computación
[3] Universidad de Zaragoza,Departamento de Matemáticas, Instituto Universitario de Matemáticas y Aplicaciones
[4] Instituto de Matemática Interdisciplinar,Centro Universitario de la Defensa, Instituto Universitario de Matemáticas y Aplicaciones
来源
Israel Journal of Mathematics | 2016年 / 216卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a complex Banach space. The connection between algebra homomorphisms defined on subalgebras of the Banach algebra l1(N0) and fractional versions of Cesàro sums of a linear operator T ∈ B(X) is established. In particular, we show that every (C, α)-bounded operator T induces an algebra homomorphism — and it is in fact characterized by such an algebra homomorphism. Our method is based on some sequence kernels, Weyl fractional difference calculus and convolution Banach algebras that are introduced and deeply examined. To illustrate our results, improvements to bounds for Abel means, new insights on the (C, α)-boundedness of the resolvent operator for temperated a-times integrated semigroups, and examples of bounded homomorphisms are given in the last section.
引用
收藏
页码:471 / 505
页数:34
相关论文
共 50 条
[41]   Equivalent Norms on Generalized Fock Spaces and the Extended Cesàro Operators [J].
Wei Chen ;
Ermin Wang .
Complex Analysis and Operator Theory, 2022, 16
[42]   RKH spaces of Brownian type defined by Cesàro–Hardy operators [J].
José E. Galé ;
Pedro J. Miana ;
Luis Sánchez–Lajusticia .
Analysis and Mathematical Physics, 2021, 11
[43]   Uniqueness of algebra norm on quotients of the algebra of bounded operators on a Banach space [J].
Arnott, Max ;
Laustsen, Niels Jakob .
JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (08)
[44]   SUMS OF ORDER BOUNDED DISJOINTNESS PRESERVING LINEAR OPERATORS [J].
Kusraev, A. G. ;
Kusraeva, Z. A. .
SIBERIAN MATHEMATICAL JOURNAL, 2019, 60 (01) :114-123
[45]   Partial Sums of Some Fractional Operators of Bounded Turning [J].
Abdulnaby, Zainab E. .
BAGHDAD SCIENCE JOURNAL, 2020, 17 (04) :1267-1270
[46]   Sums of Order Bounded Disjointness Preserving Linear Operators [J].
A. G. Kusraev ;
Z. A. Kusraeva .
Siberian Mathematical Journal, 2019, 60 :114-123
[47]   Generalized ordinal sums of aggregation operators on bounded lattices [J].
Wang, Haiwei ;
Zhao, Bin .
INFORMATION SCIENCES, 2020, 532 (532) :139-154
[48]   SUMS OF LATTICE HOMOMORPHISMS [J].
BERNAU, SJ ;
HUIJSMANS, CB ;
DEPAGTER, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (01) :151-156
[49]   REPRESENTATION OF LIE-ALGEBRA OF SYMPLECTOMORPHISMS BY BOUNDED OPERATORS [J].
AVEZ, A .
COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 279 (21) :785-787
[50]   AN ALGEBRA OF LP-BOUNDED PSEUDODIFFERENTIAL-OPERATORS [J].
ALONSO, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 94 (01) :268-282