A primal-dual approximation algorithm for the k-prize-collecting minimum power cover problem

被引:0
作者
Xiaofei Liu
Weidong Li
Runtao Xie
机构
[1] Yunnan University,School of Information Science and Engineering
[2] Peking University,School of EECS
[3] Yunnan University,School of Mathematics and Statistics
来源
Optimization Letters | 2022年 / 16卷
关键词
Power cover; -prize-collection; Primal-dual; Approximation algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce the k-prize-collecting minimum power cover problem (k-PCPC). In this problem, we are given a point set V, a sensor set S on a plane and a parameter k with k≤|V|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\le |V|$$\end{document}. Each sensor can adjust its power and the covering range of sensor s with power p(D(s, r(s))) is a disk D(s, r(s)), where r(s) is the radius of disk D(s, r(s)) and p(D(s,r(s)))=c·r(s)α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(D(s,r(s)))=c\cdot r(s)^{\alpha }$$\end{document}. The k-PCPC determines a disk set F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} such that at least k points are covered, where the center of any disk in F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} is a sensor. The objective is to minimize the total power of the disk set F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} plus the penalty of R, where R is the set of points that are not covered by F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}. This problem generalizes the well-known minimum power cover problem, minimum power partial cover problem and prize collecting minimum power cover problem. Our main result is to present a novel two-phase primal-dual algorithm for the k-PCPC with an approximation ratio of at most 3α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3^{\alpha }$$\end{document}.
引用
收藏
页码:2373 / 2385
页数:12
相关论文
共 57 条
  • [1] Bar-Yehuda R(2013)A note on multicovering with disk Comput. Geom. 46 394-399
  • [2] Rawitz D(2015)A constant-factor approximation for multi-covering with disks J. Comput. Geom. 6 220-234
  • [3] Bhowmick S(2004)Clustering to minimize the sum of cluster diameters J. Comput. Syst. Sci. 68 417-441
  • [4] Varadarajan K(1979)A greedy heuristic for the set-covering problem Math. Oper. Res. 4 233-235
  • [5] Xue S(2021)Online algorithms for the mixed ring loading problem with two nodes Optim. Lett. 15 1229-1239
  • [6] Charikar M(2017)A 5-approximation algorithm for the Optim. Lett. 13 573-585
  • [7] Panigrahy R(2020)-prize-collecting Steiner tree problem Theor. Comput. Sci. 844 26-33
  • [8] Chvatal V(1974)An approximation algorithm for the J. Comput. Syst. Sci. 9 256-278
  • [9] Guan L(2020)-prize-collecting multicut on a tree problem J. Comb. Optim. 39 1-22
  • [10] Li W(2013)Approximation algorithms for combinatorial problems ACM Trans. Embed. Comput. Syst. 13 1-21