A universality theorem for the Riemann zeta-function with respect to Beatty sets

被引:0
作者
Athanasios Sourmelidis
机构
[1] Würzburg University,Institute of Mathematics
来源
Lithuanian Mathematical Journal | 2020年 / 60卷
关键词
Riemann zeta-function; Beatty sequences; uniform distribution; universality; 11M06;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that, for given positive numbers α and h, the Riemann zeta-function ζ can approximate any nonvanishing analytic function on a simply connected compact subset of the right open half of the critical strip by shifts of type ζ(s + ih⌊αn⌋).
引用
收藏
页码:92 / 106
页数:14
相关论文
共 6 条
  • [1] Kaczorowski J(2007)On the non-trivial zeros off the critical line for Monatsh. Math. 150 217-232
  • [2] Kulas M(2018)-functions from the extended Selberg class Ramanujan J. 45 181-195
  • [3] Pańkowski Ł(1980)Joint universality for dependent Arch. Math. 34 440-451
  • [4] Reich A(2018)-functions Unif. Distrib. Theory 13 131-145
  • [5] Sourmelidis A(1975)Werteverteilung von Zetafunktionen Math. USSR, Izv. 9 443-453
  • [6] Voronin SM(undefined)Weak universality theorem on the approximation of analytic functions by shifts of the Riemann zeta-function from a Beatty sequence undefined undefined undefined-undefined