Hydrophilic patterning of octadecyltrichlorosilane (OTS)-coated paper via atmospheric-pressure dielectric-barrier-discharge jet (DBDjet)

被引:0
|
作者
Pei-Yu Cheng
Jui-Hsuan Tsai
Jian-Zhang Chen
机构
[1] National Taiwan University,Graduate Institute of Applied Mechanics
[2] National Taiwan University,Advanced Research Center for Green Materials Science and Technology
来源
Cellulose | 2020年 / 27卷
关键词
Atmospheric-pressure plasma; Dielectric barrier discharge; Octadecyltrichlorosilane; Microfluidic device; Paper-based biochip;
D O I
暂无
中图分类号
学科分类号
摘要
This study demonstrates a method for patterning paper-based microfluidic devices. An octadecyltrichlorosilane (OTS) solution is used to coat a chromatography paper to make it hydrophobic. A low-temperature (~ 32.9 °C) atmospheric-pressure dielectric-barrier-discharge jet with a shadow mask is then used to pattern hydrophilic stripes on the OTS-coated hydrophobic paper. In this manner, 1-mm-wide hydrophilic stripes are patterned successfully. Liquids are demonstrated to be transported and mixed in the hydrophilic stripes. Water contact angle measurement, X-ray photoelectron spectroscopy, surface profiler, optical emission spectroscopy, and scanning electron microscopy are used to characterize effect of pattering.
引用
收藏
页码:10293 / 10301
页数:8
相关论文
共 50 条
  • [21] Spectroscopic investigation of atmospheric pressure cold plasma jet produced in dielectric barrier discharge
    Imran, Mubashair
    Khan, Majid
    Javed, M. A.
    Ahmad, S.
    Qayyum, A.
    CURRENT APPLIED PHYSICS, 2023, 50 : 81 - 91
  • [22] Electron density and temperature in an atmospheric-pressure helium diffuse dielectric barrier discharge from kHz to MHz
    Boisvert, J-S
    Stafford, L.
    Naude, N.
    Margot, J.
    Massines, F.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2018, 27 (03)
  • [23] Atmospheric-pressure floating electrode-dielectric barrier discharge with flexible electrodes: Effect of conductor shapes
    Kim, Jun-Hyun
    Park, Jin-Su
    Shin, Yong-Seon
    Kim, Chang-Koo
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2019, 36 (08) : 1371 - 1376
  • [24] Atmospheric-pressure floating electrode-dielectric barrier discharge with flexible electrodes: Effect of conductor shapes
    Jun-Hyun Kim
    Jin-Su Park
    Yong-Seon Shin
    Chang-Koo Kim
    Korean Journal of Chemical Engineering, 2019, 36 : 1371 - 1376
  • [25] Decomposition of aqueous solution of acetic acid under the action of atmospheric-pressure dielectric barrier discharge in oxygen
    E. S. Bobkova
    A. A. Isakina
    V. I. Grinevich
    V. V. Rybkin
    Russian Journal of Applied Chemistry, 2012, 85 : 71 - 75
  • [26] Investigating the Characteristics of a Coplanar-Coaxial Atmospheric Pressure Dielectric Barrier Discharge Jet in Argon
    Lai, K. L.
    Jayapalan, K. K.
    Chin, O. H.
    Lee, P. F.
    Wong, C. S.
    NATIONAL PHYSICS CONFERENCE 2014 (PERFIK 2014), 2015, 1657
  • [27] Transitions of an atmospheric-pressure diffuse dielectric barrier discharge in helium for frequencies increasing from kHz to MHz
    Boisvert, J-S
    Margot, J.
    Massines, F.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2017, 26 (03)
  • [28] Discharge Images of a Dielectric-Barrier-Free Atmospheric-Pressure Microplasma Controlled by an External Ballast Capacitor
    Ha, Chang-Seung
    Kim, Dong-Hyun
    Lee, Hae June
    Lee, Ho-Jun
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (11) : 2378 - 2379
  • [29] DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application
    Tsai, Jui-Hsuan
    Cheng, I-Chun
    Hsu, Cheng-Che
    Chen, Jian-Zhang
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (02)
  • [30] Three Forms of Columnar Discharge and Stripe Patterns in Irregular-electric-field Atmospheric-pressure Helium Dielectric Barrier Discharge
    Su H.
    Hao Y.
    Zheng Y.
    Wan H.
    Yang L.
    Li L.
    Gaodianya Jishu/High Voltage Engineering, 2022, 48 (06): : 2309 - 2316