The signed edge-domatic number of nearly cubic graphs

被引:0
|
作者
Jia-Xiong Dan
Zhi-Bo Zhu
Xin-Kui Yang
Ru-Yi Li
Wei-Jie Zhao
Xiang-Jun Li
机构
[1] Yangtze University,School of Information and Mathematics
来源
Journal of Combinatorial Optimization | 2022年 / 44卷
关键词
Domination; Domatic number; Nearly cubic graph; Signed edge-domination;
D O I
暂无
中图分类号
学科分类号
摘要
A signed edge-domination of graph G is a function f:E(G)→{+1,-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\ E(G)\rightarrow \{+1,-1\}$$\end{document} such that ∑e′∈NG[e]f(e′)≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{e'\in N_{G}[e]}{f(e')}\ge 1$$\end{document} for each e∈E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in E(G)$$\end{document}. A set {f1,f2,…,fd}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ f_1,f_2,\ldots , f_d \}$$\end{document} of the signed edge-domination of G is called a family of signed edge-dominations of G if ∑i=1dfi(e)≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i=1}^{d}{f_i(e)}\le 1 $$\end{document} for every e∈E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e \in E(G)$$\end{document}. The largest number of a family of signed edge-dominations of G is the signed edge-domatic number of G. This paper studies the signed edge-domatic number of nearly cubic graph, and determines this parameter for a class of graphs.
引用
收藏
页码:435 / 445
页数:10
相关论文
共 43 条
  • [31] LOWER BOUNDS ON SIGNED EDGE TOTAL DOMINATION NUMBERS IN GRAPHS
    Karami, H.
    Sheikholeslami, S. M.
    Khodkar, Abdollah
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (03) : 595 - 603
  • [32] Lower bounds on signed edge total domination numbers in graphs
    H. Karami
    S. M. Sheikholeslami
    Abdollah Khodkar
    Czechoslovak Mathematical Journal, 2008, 58 : 595 - 603
  • [33] Domination number of cubic graphs with large girth
    Kral', Daniel
    Skoda, Petr
    Volec, Jan
    JOURNAL OF GRAPH THEORY, 2012, 69 (02) : 131 - 142
  • [34] Signed edge domination numbers of complete tripartite graphs: Part One
    Khodkar, Abdollah
    Ghameshlou, Arezoo Nazi
    UTILITAS MATHEMATICA, 2017, 105 : 237 - 258
  • [35] A NEW BOUND ON THE DOMINATION NUMBER OF CONNECTED CUBIC GRAPHS
    Kostochka, A., V
    Stocker, C.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2009, 6 : 465 - 504
  • [36] The zero forcing number of claw-free cubic graphs
    He, Mengya
    Li, Huixian
    Song, Ning
    Ji, Shengjin
    DISCRETE APPLIED MATHEMATICS, 2024, 359 : 321 - 330
  • [37] Best possible upper bounds on the restrained domination number of cubic graphs
    Bresar, Bostjan
    Henning, Michael A.
    JOURNAL OF GRAPH THEORY, 2024, 106 (04) : 763 - 815
  • [38] Zero Forcing Number of Cubic and Quartic Cayley Graphs on Abelian Groups
    Li, Huixian
    Ji, Shengjin
    Li, Guang
    JOURNAL OF INTERCONNECTION NETWORKS, 2025,
  • [39] An upper bound on the domination number of n-vertex connected cubic graphs
    Kostochka, A. V.
    Stodolsky, B. Y.
    DISCRETE MATHEMATICS, 2009, 309 (05) : 1142 - 1162
  • [40] Total Domination Edge Critical Graphs with Total Domination Number Three and Many Dominating Pairs
    Balbuena, Camino
    Hansberg, Adriana
    Haynes, Teresa W.
    Henning, Michael A.
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1163 - 1176