The signed edge-domatic number of nearly cubic graphs

被引:0
|
作者
Jia-Xiong Dan
Zhi-Bo Zhu
Xin-Kui Yang
Ru-Yi Li
Wei-Jie Zhao
Xiang-Jun Li
机构
[1] Yangtze University,School of Information and Mathematics
来源
Journal of Combinatorial Optimization | 2022年 / 44卷
关键词
Domination; Domatic number; Nearly cubic graph; Signed edge-domination;
D O I
暂无
中图分类号
学科分类号
摘要
A signed edge-domination of graph G is a function f:E(G)→{+1,-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\ E(G)\rightarrow \{+1,-1\}$$\end{document} such that ∑e′∈NG[e]f(e′)≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{e'\in N_{G}[e]}{f(e')}\ge 1$$\end{document} for each e∈E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in E(G)$$\end{document}. A set {f1,f2,…,fd}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ f_1,f_2,\ldots , f_d \}$$\end{document} of the signed edge-domination of G is called a family of signed edge-dominations of G if ∑i=1dfi(e)≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i=1}^{d}{f_i(e)}\le 1 $$\end{document} for every e∈E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e \in E(G)$$\end{document}. The largest number of a family of signed edge-dominations of G is the signed edge-domatic number of G. This paper studies the signed edge-domatic number of nearly cubic graph, and determines this parameter for a class of graphs.
引用
收藏
页码:435 / 445
页数:10
相关论文
共 43 条
  • [1] The signed edge-domatic number of nearly cubic graphs
    Dan, Jia-Xiong
    Zhu, Zhi-Bo
    Yang, Xin-Kui
    Li, Ru-Yi
    Zhao, Wei-Jie
    Li, Xiang-Jun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (01) : 435 - 445
  • [2] The Signed Edge-Domatic Number of a Graph
    Xiang-Jun Li
    Jun-Ming Xu
    Graphs and Combinatorics, 2013, 29 : 1881 - 1890
  • [3] The Signed Edge-Domatic Number of a Graph
    Li, Xiang-Jun
    Xu, Jun-Ming
    GRAPHS AND COMBINATORICS, 2013, 29 (06) : 1881 - 1890
  • [4] The signed domatic number of some regular graphs
    Meierling, Dirk
    Volkmann, Lutz
    Zitzen, Stephan
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (08) : 1905 - 1912
  • [5] Some remarks on the signed domatic number of graphs with small minimum degree
    Volkmann, Lutz
    APPLIED MATHEMATICS LETTERS, 2009, 22 (08) : 1166 - 1169
  • [6] Bounds on the signed domatic number
    Volkmann, Lutz
    APPLIED MATHEMATICS LETTERS, 2011, 24 (02) : 196 - 198
  • [7] On domatic number of graphs
    Shadravan, M.
    Borzooei, R. A.
    JOURNAL OF MATHEMATICAL EXTENSION, 2023, 17 (08)
  • [8] The signed cycle domatic number of a graph
    Meng, Wei
    Wang, Ruixia
    ARS COMBINATORIA, 2017, 130 : 131 - 141
  • [9] Upper bounds on the signed (k, k)-domatic number
    Volkmann, Lutz
    AEQUATIONES MATHEMATICAE, 2013, 86 (03) : 279 - 287
  • [10] Signed domatic numbers of the complete bipartite graphs
    Volkmann, L
    UTILITAS MATHEMATICA, 2005, 68 : 71 - 77