Brownian motion characterization of some Besov-Lipschitz spaces on domains

被引:0
作者
Hrvoje Šikić
Mitchell H. Taibleson
机构
[1] Washington University,Department of Mathematics
[2] University of Zagreb,Department of Mathematics
来源
The Journal of Geometric Analysis | 2005年 / 15卷
关键词
46E35; 60J65; Besov-Lipschitz spaces; Brownian motion;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize the Besov-Lipschitz spaces with zero boundary conditions on bounded smooth domains. We prove that the appropriate first and second difference norms are equivalent to the norm given in terms of the transition kernel of the Brownian motion killed upon exit from the domain.
引用
收藏
页码:137 / 180
页数:43
相关论文
共 26 条
[1]  
Besov O. V.(1959)On a family of function spaces. Embedding theorems and extensions Dokl. Akad. Nauk SSSR 126 1163-1165
[2]  
Besov O. V.(1961)On a family of function spaces in connection with embeddings and extensions Trudy Mat. Inst. Steklov 60 42-81
[3]  
Bui H.-Q.(1996)A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces Studia Math. 119 219-246
[4]  
Paluszyński M.(1993) theory on a smooth domain in J. Funct. Anal. 114 286-347
[5]  
Taibleson M. H.(1971) and elliptic boundary value problems Proc. London Math. Soc. 22 385-451
[6]  
Chang D.C.(1995)Temperatures, Bessel potentials and Lipschitz spaces Math. Nachr. 174 113-149
[7]  
Krantz S. G.(1986)Regular elliptic boundary value problems in Besov-Triebel-Lizorkin spaces Trans. Amer. Math. Soc. 296 239-264
[8]  
Stein E. M.(1956)On excursions of reflecting Brownian motion Trans. Amer. Math. Soc. 81 294-319
[9]  
Flett T. M.(1974)Some theorems concerning Brownian motion Publ. RIMS Kyoto Univ. 9 325-396
[10]  
Franke J.(1998)On Besov spaces and Sobolev spaces of generalized functions defined on a general region J. Math. Soc. Japan 50 331-337