Augmented Lagrangian methods for nonlinear programming with possible infeasibility

被引:0
|
作者
M. L. N. Gonçalves
J. G. Melo
L. F. Prudente
机构
[1] Institute of Mathematics and Statistics,
[2] Federal University of Goias,undefined
来源
关键词
Global optimization; Augmented Lagrangians; Nonlinear programming; Infeasibility;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a nonlinear programming problem for which the constraint set may be infeasible. We propose an algorithm based on a large family of augmented Lagrangian functions and analyze its global convergence properties taking into account the possible infeasibility of the problem. We show that, in a finite number of iterations, the algorithm stops detecting the infeasibility of the problem or finds an approximate feasible/optimal solution with any required precision. We illustrate, by means of numerical experiments, that our algorithm is reliable for different Lagrangian/penalty functions proposed in the literature.
引用
收藏
页码:297 / 318
页数:21
相关论文
共 50 条
  • [1] Augmented Lagrangian methods for nonlinear programming with possible infeasibility
    Goncalves, M. L. N.
    Melo, J. G.
    Prudente, L. F.
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 63 (02) : 297 - 318
  • [2] Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming
    Birgin, E. G.
    Martinez, J. M.
    Prudente, L. F.
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 58 (02) : 207 - 242
  • [3] Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming
    E. G. Birgin
    J. M. Martínez
    L. F. Prudente
    Journal of Global Optimization, 2014, 58 : 207 - 242
  • [4] On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming
    Luo, H. Z.
    Wu, H. X.
    Chen, G. T.
    JOURNAL OF GLOBAL OPTIMIZATION, 2012, 54 (03) : 599 - 618
  • [5] On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming
    H. Z. Luo
    H. X. Wu
    G. T. Chen
    Journal of Global Optimization, 2012, 54 : 599 - 618
  • [6] Convergence of augmented Lagrangian methods in extensions beyond nonlinear programming
    Rockafellar, R. Tyrrell
    MATHEMATICAL PROGRAMMING, 2023, 199 (1-2) : 375 - 420
  • [7] Convergence of augmented Lagrangian methods in extensions beyond nonlinear programming
    R. Tyrrell Rockafellar
    Mathematical Programming, 2023, 199 : 375 - 420
  • [8] Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming
    Wu, Huixian
    Luo, Hezhi
    Ding, Xiaodong
    Chen, Guanting
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 56 (03) : 531 - 558
  • [9] Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming
    Huixian Wu
    Hezhi Luo
    Xiaodong Ding
    Guanting Chen
    Computational Optimization and Applications, 2013, 56 : 531 - 558
  • [10] On the convergence of augmented Lagrangian strategies for nonlinear programming
    Andreani, Roberto
    Ramos, Alberto
    Ribeiro, Ademir A.
    Secchin, Leonardo D.
    Velazco, Ariel R.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) : 1735 - 1765