Partitions and the Minimal Excludant

被引:0
作者
George E. Andrews
David Newman
机构
[1] The Pennsylvania State University,
[2] Far Rockaway,undefined
来源
Annals of Combinatorics | 2019年 / 23卷
关键词
Minimal excludant; MEX; Partitions; Two color partitions; 11A63; 11P81; 05A19;
D O I
暂无
中图分类号
学科分类号
摘要
Fraenkel and Peled have defined the minimal excludant or “mex\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{mex}\,}}$$\end{document}” function on a set S of positive integers is the least positive integer not in S. For each integer partition π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}, we define mex(π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{mex}\,}}(\pi )$$\end{document} to be the least positive integer that is not a part of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}. Define σmex(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma {{\,\mathrm{mex}\,}}(n)$$\end{document} to be the sum of mex(π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{mex}\,}}(\pi )$$\end{document} taken over all partitions of n. It will be shown that σmex(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma {{\,\mathrm{mex}\,}}(n)$$\end{document} is equal to the number of partitions of n into distinct parts with two colors. Finally the number of partitions π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} of n with mex(π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{mex}\,}}(\pi )$$\end{document} odd is almost always even.
引用
收藏
页码:249 / 254
页数:5
相关论文
共 2 条
[1]  
Andrews GE(2012)The truncated pentagonal number theorem J. Combin. Theory Ser. A 119 1639-1643
[2]  
Merca M(undefined)undefined undefined undefined undefined-undefined