Estimates of the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{L^p}$$\end{document} Norms of the Bergman Projection on Strongly Pseudoconvex Domains

被引:0
作者
Željko Čučković
机构
[1] University of Toledo,Department of Mathematics and Statistics
关键词
Bergman projection; Bergman kernel; Strongly pseudoconvex domains; 32A25; 32A36;
D O I
10.1007/s00020-017-2360-3
中图分类号
学科分类号
摘要
We give estimates of the Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} norm of the Bergman projection on a strongly pseudoconvex domain in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^n$$\end{document}. We show that this norm is comparable to p2p-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{p^2}{p - 1}$$\end{document} for 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p< \infty $$\end{document}.
引用
收藏
页码:331 / 338
页数:7
相关论文
共 20 条
  • [1] Boutet de Monvel L(1976)Sur la singularité des noyaux de Bergman et de Szegö Soc. Math. France Astérisque 34–35 123-164
  • [2] Sjöstrand J(2006)Special Toeplitz operators on strongly pseudoconvex domains Rev. Mat. Iberoam. 22 851-866
  • [3] Čučković Ž(1974)The Bergman kernel and biholomorphic mappings of pseudoconvex domains Inv. Math. 26 1-65
  • [4] McNeal JD(2014)Duality of holomorphic function spaces and smoothing properties of the Bergman projection Trans. Am. Math. Soc. 366 647-665
  • [5] Fefferman C(1965) estimates and existence theorems for the Acta Math. 113 89-152
  • [6] Herbig A-K(1972)-operator Math. Ann. 195 149-158
  • [7] McNeal JD(1989)The Bergman kernel function. Differentiability at the boundary Duke Math. J. 58 499-512
  • [8] Straube EJ(1994)Boundary behavior of the Bergman kernel function in Duke Math. J. 73 177-199
  • [9] Hörmander L(1989)Mapping properties of the Bergman projection on convex domains of finite type Ann. Math. 129 113-149
  • [10] Kerzman N(1977)Estimates for the Bergman and Szegö kernels in Duke Math. J. 44 695-704