Free Subgroups in Certain Generalized Triangle Groups of Type (2, m, 2)

被引:0
作者
James Howie
Gerald Williams
机构
[1] Heriot-Watt University,School of Mathematical and Computer Sciences
[2] University of Kent,Institute of Mathematics, Statistics and Actuarial Science
来源
Geometriae Dedicata | 2006年 / 119卷
关键词
Generalised triangle group; Free subgroup; Tits alternative; 20F05; 20E05; 57M07;
D O I
暂无
中图分类号
学科分类号
摘要
A generalized triangle group is a group that can be presented in the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = \langle x,y | x^p = y^q = w(x,y)^{r} = 1 \rangle$$\end{document} where p,q,r ≥ 2 and w(x,y) is a cyclically reduced word of length at least 2 in the free product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Z}_{p}*\mathbb{Z}_{q}=\langle x,y x^p = y^q = 1\rangle$$\end{document}. Rosenberger has conjectured that every generalized triangle group G satisfies the Tits alternative. It is known that the conjecture holds except possibly when the triple (p,q,r) is one of (3, 3, 2), (3, 4, 2), (3, 5, 2), or (2, m, 2) where m=3, 4, 5, 6, 10, 12, 15 , 20, 30, 60. In this paper, we show that the Tits alternative holds in the cases (p,q,r)=(2, m, 2) where m=6, 10, 12, 15, 20, 30, 60.
引用
收藏
页码:181 / 197
页数:16
相关论文
共 16 条
[1]  
Barkovich O.A.(2003)On Tits alternative for generalized triangular groups of (2, 6, 2) type (Russian) Dokl. Nat. Akad. Nauk. Belarusi 48 28-33
[2]  
Benyash-Krivets V.V.(1987)Generalized triangle groups Math. Proc. Cambridge Philos. Soc. 102 25-31
[3]  
Baumslag G.(2003)On free subgroups of certain generalised triangle groups (Russian) Dokl. Nat. Akad. Nauk. Belarusi 47 14-17
[4]  
Morgan J.W.(2004)On the Tits alternative for some generalized triangle groups Algebra Discrete Math. 2004 23-43
[5]  
Shalen P.B.(1980)Valuations and finitely presented metabelian groups Proc. London Math. Soc. (3) 41 439-464
[6]  
Benyash-Krivets V.V.(1988)Free subgroups and decompositions of one-relator products of cyclics I The Tits alternative Arch. Math. (Basel) 50 97-109
[7]  
Benyash-Krivets V.V.(1972)Characters of free groups represented in the two-dimensional special linear group Comm. Pure Appl. Math. 25 635-649
[8]  
Barkovich O.A.(1998)Free subgroups in groups of small deficiency J. Group Theory 1 95-112
[9]  
Bieri R.(1989)On free subgroups of generalized triangle groups Algebra i Logika 28 227-240
[10]  
Strebel R.(undefined)undefined undefined undefined undefined-undefined