Design Strategies for Aqueous Zinc Metal Batteries with High Zinc Utilization: From Metal Anodes to Anode-Free Structures

被引:112
作者
Zhang, Xianfu [1 ]
Zhang, Long [1 ]
Jia, Xinyuan [1 ]
Song, Wen [1 ]
Liu, Yongchang [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, 30 Coll Rd, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing Adv Innovat Ctr Mat Genome Engn, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous zinc metal batteries; Zinc anodes; High zinc utilization; Depth of discharge; Anode-free structures; DENDRITE-FREE; ION BATTERIES; LONG-LIFE; DEPOSITION; ELECTROLYTE; PERFORMANCE; INTERFACE; GROWTH; HOST; FILM;
D O I
10.1007/s40820-023-01304-1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Representative methods for calculating the depth of discharge of different Zn anodes are introduced.Recent advances of aqueous Zn metal batteries with high Zn utilization are reviewed and categorized according to Zn anodes with different structures.The working mechanism of anode-free aqueous Zn metal batteries is introduced in detail, and different modification strategies for anode-free aqueous Zn metal batteries are summarized. Aqueous zinc metal batteries (AZMBs) are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc (Zn) metal. However, several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries (AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented.
引用
收藏
页数:45
相关论文
共 218 条
[51]   Emergence of nonaqueous electrolytes for rechargeable zinc batteries [J].
Kar, Mega ;
Pozo-Gonzalo, Cristina .
CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2021, 28
[52]   Stabilizing zinc anodes for different configurations of rechargeable zinc-air batteries [J].
Khezri, Ramin ;
Motlagh, Shiva Rezaei ;
Etesami, Mohammad ;
Mohamad, Ahmad Azmin ;
Mahlendorf, Falko ;
Somwangthanaroj, Anongnat ;
Kheawhom, Soorathep .
CHEMICAL ENGINEERING JOURNAL, 2022, 449
[53]   Demixing the miscible liquids: toward biphasic battery electrolytes based on the kosmotropic effect [J].
Kim, Won-Yeong ;
Kim, Hong-, I ;
Lee, Kyung Min ;
Shin, Eunhye ;
Liu, Xu ;
Moon, Hyunseok ;
Adenusi, Henry ;
Passerini, Stefano ;
Kwak, Sang Kyu ;
Lee, Sang-Young .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (12) :5217-5228
[54]   Stimulating Cu-Zn alloying for compact Zn metal growth towards high energy aqueous batteries and hybrid supercapacitors [J].
Kwon, Minhyung ;
Lee, Jina ;
Ko, Sunghyun ;
Lim, Gukhyun ;
Yu, Seung-Ho ;
Hong, Jihyun ;
Lee, Minah .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (07) :2889-2899
[55]   Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries [J].
Li, Chang ;
Kingsbury, Ryan ;
Thind, Arashdeep Singh ;
Shyamsunder, Abhinandan ;
Fister, Timothy T. ;
Klie, Robert F. ;
Persson, Kristin A. ;
Nazar, Linda F. .
NATURE COMMUNICATIONS, 2023, 14 (01)
[56]   Toward practical aqueous zinc-ion batteries for electrochemical energy storage [J].
Li, Chang ;
Jin, Shuo ;
Archer, Lynden A. ;
Nazar, Linda F. .
JOULE, 2022, 6 (08) :1733-1738
[57]   Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry [J].
Li, Chang ;
Shyamsunder, Abhinandan ;
Hoane, Alexis Grace ;
Long, Daniel M. ;
Kwok, Chun Yuen ;
Kotula, Paul G. ;
Zavadil, Kevin R. ;
Gewirth, Andrew A. ;
Nazar, Linda F. .
JOULE, 2022, 6 (05) :1103-1120
[58]   A Lean-Zinc and Zincophilic Anode for Highly Reversible Zinc Metal Batteries [J].
Li, Chao ;
Shao, Qingguo ;
Luo, Kan ;
Gao, Yiqiu ;
Zhao, Wenwen ;
Cao, Ning ;
Du, Shiyu ;
Jin, Xin ;
Zou, Peichao ;
Zang, Xiaobei .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (49)
[59]   A lean-zinc anode battery based on metal-organic framework-derived carbon [J].
Li, Chao ;
Liang, Liheng ;
Liu, Xuhui ;
Cao, Ning ;
Shao, Qingguo ;
Zou, Peichao ;
Zang, Xiaobei .
CARBON ENERGY, 2023, 5 (04)
[60]   In Situ Constructing a Film-Coated 3D Porous Zn Anode by Iodine Etching Strategy Toward Horizontally Arranged Dendrite-Free Zn Deposition [J].
Li, Gaopeng ;
Wang, Xinlu ;
Lv, Shuhui ;
Wang, Jinxian ;
Yu, Wensheng ;
Dong, Xiangting ;
Liu, Dongtao .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (04)