Quantitative characterization of pore network and influencing factors of methane adsorption capacity of transitional shale from the southern North China Basin

被引:0
|
作者
Wen Liu
Qiuchen Xu
Haizhou Wang
Peng Liu
Ruiliang Guo
Yang Zhang
Keyi Wei
机构
[1] Chinese Academy of Geological Sciences,Key Lab of Shale Oil and Gas Geological Survey
[2] Chinese Academy of Geological Sciences,Institute of Geomechanics
[3] Oil and Gas Survey,State Key Laboratory of Petroleum Resources and Prospecting
[4] China Geological Survey,College of Geosciences
[5] China University of Petroleum (Beijing),College of Safety Science and Engineering
[6] China University of Petroleum (Beijing),School of Earth Sciences and Engineering
[7] Xi’an University of Science and Technology,undefined
[8] Xi’an Shiyou University,undefined
来源
Journal of Petroleum Exploration and Production Technology | 2022年 / 12卷
关键词
Shale gas; Transitional shale; Pore structure; Methane adsorption; Southern north china basin;
D O I
暂无
中图分类号
学科分类号
摘要
Quantitative characterization of pore structure and analysis of influencing factors of methane adsorption are important segments in shale gas reservoir and resources evaluation and have not been systematically carried out in marine–continental shale series. A series of integrated methods, including total organic carbon (TOC) contents, Rock-Eval pyrolysis, mineral composition analysis, pore structure measurement, high-pressure CH4 adsorption analysis and FE-SEM observation, were conducted on 12 transitional shale samples of well WBC-1 in the southern North China Basin (SNCB). The results indicate that TOC contents of the transitional shales range from 1.03 to 8.06% with an average of 2.39%. The transitional shale consists chiefly of quartz, white mica and clay minerals. Interparticle pore, intraparticle pore, dissolution pore and microfracture were observed in the FE-SEM images. The specific surface area (SSA) of BET for the samples ranges from 3.3612 to 12.1217 m2/g (average: 6.9320 m2/g), whereas the DR SSA for the samples ranges from 12.9844 to 35.4267 m2/g (average: 19.67 m2/g). The Langmuir volume (VL) ranges from 2.05 to 4.75 cm3/g (average = 2.43 cm3/g). There is unobvious correction between BET and DR SSA with TOC contents, which means inorganic pores are the main component of pore space in the transitional shale from the SNCB. The relationship of SSA and pore volume shows that micropore has a greater impact on the CH4 adsorption capacity than mesopore–macropore in the transitional shale. Different from shales in other petroliferous basin, clay minerals are the primary factor affecting adsorption capacity of CH4 for transitional shale in this study. The pore structure of the transitional shale for this study is characterized by higher fractal dimension and more heterogeneous pore structure compared to shale in other petroliferous basin. This study provides an example and new revelation for the influencing factors of pore structure and methane adsorption capacity of marine–continental transitional shale.
引用
收藏
页码:793 / 810
页数:17
相关论文
共 50 条
  • [41] Tectonic Control on Shale Pore Structure and Gas Content from the Longmaxi Formation Shale in Southern Sichuan Basin, China: Insights from Fractal Analysis and Low-Pressure Gas Adsorption
    Shi, Xuewen
    Liang, Zhikai
    Yang, Yuran
    Li, Yi
    Jiang, Zhenxue
    Li, Yanyou
    Li, Runtong
    Deng, Feiyong
    PROCESSES, 2023, 11 (10)
  • [42] Diagenesis of marine-continental transitional shale from the Upper Permian Longtan Formation in southern Sichuan Basin, China
    Yu, Yu
    Deng, Xiaoliang
    Deng, Yuwei
    OPEN GEOSCIENCES, 2024, 16 (01):
  • [43] Critical factors controlling adsorption capacity of shale gas in Wufeng-Longmaxi formation, Sichuan Basin: Evidences from both experiments and molecular simulations
    Chen, Guohui
    Li, Chun
    Lu, Shuangfang
    Guo, Tonglou
    Wang, Min
    Xue, Qingzhong
    Zhang, Tianyu
    Li, Zhining
    Sun, Yonghe
    Liu, Jinzhong
    Jiang, Shu
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2021, 88
  • [44] Mineral Composition and Its Control on Nanopores of Marine-Continental Transitional Shale from the Ningwu Basin, North China
    Zhang, Bao-Xin
    Fu, Xue-Hai
    Shen, Yu-Lin
    Zhang, Qing-Hui
    Deng, Ze
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2021, 21 (01) : 168 - 180
  • [45] Pore structure and its fractal dimensions of transitional shale: A cross-section from east margin of the Ordos Basin, China
    Li, Yong
    Wang, Zhuangsen
    Pan, Zhejun
    Niu, Xinlei
    Yu, Yun
    Meng, Shangzhi
    FUEL, 2019, 241 : 417 - 431
  • [46] Characterization and Control of Pore Structural Heterogeneity for Low-Thermal-Maturity Shale: A Case Study of the Shanxi Formation in the Northeast Zhoukou Depression, Southern North China Basin
    Liu, Enran
    Liu, Chenglin
    Shi, Dishi
    Zhu, Disi
    Xu, Qiuchen
    Wang, Yanhong
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [47] Investigation of gas content of organic-rich shale: A case study from Lower Permian shale in southern North China Basin, central China
    Dang, Wei
    Zhang, Jin-Chuan
    Tang, Xuan
    Wei, Xiao-Liang
    Li, Zhong-Ming
    Wang, Cheng-Hu
    Chen, Qian
    Liu, Chong
    GEOSCIENCE FRONTIERS, 2018, 9 (02) : 559 - 575
  • [48] Pore Structure and Factors Controlling Shale Reservoir Quality: A Case Study of Chang 7 Formation in the Southern Ordos Basin, China
    Li, Qing
    You, Xuelian
    Li, Jiangshan
    Zhou, Yuan
    Lu, Hao
    Wu, Shenghe
    Yue, Dali
    Zhang, Houmin
    ENERGIES, 2024, 17 (05)
  • [49] Influence of rock properties and prediction on the methane storage capacity in marine-continental transitional shale and coal from northern China
    Xin, Di
    Zhang, Song-hang
    Tang, Shu-heng
    Xi, Zhao-dong
    Jia, Teng-fei
    JOURNAL OF ASIAN EARTH SCIENCES, 2023, 254
  • [50] Full-scale pore structure and its controlling factors of the Wufeng-Longmaxi shale, southern Sichuan Basin, China: Implications for pore evolution of highly overmature marine shale
    Wang, Yang
    Liu, Luofu
    Zheng, Shanshan
    Luo, Zehua
    Sheng, Yue
    Wang, Ximeng
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2019, 67 : 134 - 146