Well-Posedness for Hyperbolic Systems of Conservation Laws with Large BV Data

被引:0
作者
Marta Lewicka
机构
[1] Department of Mathematics,University of Chicago
来源
Archive for Rational Mechanics and Analysis | 2004年 / 173卷
关键词
Total Variation; Initial Data; Stability Condition; Cauchy Problem; Space Dimension;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Cauchy problem for a strictly hyperbolic n × n system of conservation laws in one space dimension [inline-graphic not available: see fulltext] assuming that the initial data [inline-graphic not available: see fulltext] has bounded but possibly large total variation. Under a linearized stability condition on the Riemann problems generated by the jumps in [inline-graphic not available: see fulltext] we prove existence and uniqueness of a (local in time) BV solution, depending continuously on the initial data in L1loc. The last section contains an application to the 3 × 3 system of gas dynamics.
引用
收藏
页码:415 / 445
页数:30
相关论文
共 8 条
[1]  
Baiti undefined(1998)undefined J. Math. Anal. Appl. 217 395-undefined
[2]  
Bressan undefined(1995)undefined Indiana U. Math. J. 44 677-undefined
[3]  
Bressan undefined(1999)undefined Arch. Rational Mech. Anal. 149 1-undefined
[4]  
Bressan undefined(1995)undefined Comm. Partial Differential Equations. 20 1491-undefined
[5]  
Lax undefined(1957)undefined Comm. Pure Appl. Math. 10 537-undefined
[6]  
Lewicka undefined(2000)undefined Indiana Univ. Math. J. 49 1515-undefined
[7]  
Lewicka undefined(2001)undefined SIAM J. Math. Anal. 32 1094-undefined
[8]  
Schochet undefined(1991)undefined J. Differential Equations 89 317-undefined