Fractal Dimensions of Umbral and Penumbral Regions of Sunspots

被引:0
作者
B. Rajkumar
S. Haque
W. Hrudey
机构
[1] Department of Physics,University of the West Indies
[2] University College of Cayman Islands,William Hrudey Observatory
来源
Solar Physics | 2017年 / 292卷
关键词
Active regions; Sunspots; Fractal dimensions; Umbra; Penumbra;
D O I
暂无
中图分类号
学科分类号
摘要
The images of sunspots in 16 active regions taken at the University College of the Cayman Islands (UCCI) Observatory on Grand Cayman during June–November 2015 were used to determine their fractal dimensions using the perimeter–area method for the umbral and the penumbral region. Scale-free fractal dimensions of 2.09±0.42\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2.09 \pm0.42$\end{document} and 1.72±0.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.72 \pm0.4$\end{document} were found, respectively. This value was higher than the value determined by Chumak and Chumak (Astron. Astrophys. Trans.10, 329, 1996), who used a similar method, but only for the penumbral region of their sample set. The umbral and penumbral fractal dimensions for the specific sunspots are positively correlated with r=0.58\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r = 0.58$\end{document}. Furthermore, a similar time-series analysis was performed on eight images of AR 12403, from 21 August 2015 to 28 August 2015 taken from the Debrecen Photoheliographic Data (DPD). The correlation is r=0.623\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r = 0.623$\end{document} between the umbral and penumbral fractal dimensions in the time series, indicating that the complexity in morphology indicated by the fractal dimension between the umbra and penumbra followed each other in time as well.
引用
收藏
相关论文
共 50 条
[41]   Umbral flashes and their association with running penumbral waves: a study using MAST Ca ii 8542 Å narrow-band observations [J].
Dubey, Sandeep K. ;
Mathew, Shibu K. ;
Bayanna, A. Raja .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 535 (01) :1228-1241
[42]   REMARKS ON THE LOCAL STRUCTURE OF REGULAR FRACTAL FUNCTIONS WITH FRACTAL DIMENSIONS [J].
Zhang, Q. ;
Lu, L. J. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (09)
[43]   Helioseismic observations of subphotospheric dynamics of sunspots and developing active regions [J].
Kosovichev, AG ;
Duvall, TL ;
Zhao, JW .
SOLMAG 2002: PROCEEDINGS OF THE MAGNETIC COUPLING OF THE SOLAR ATMOSPHERE EUROCONFERENCE AND IAU COLLOQUIUM 188, 2002, 505 :79-82
[44]   Study of the Magnetic Properties of Sunspots in Active Regions with Explosive Processes [J].
Zagainova, Yu. S. ;
Fainshtein, V. G. .
GEOMAGNETISM AND AERONOMY, 2022, 62 (08) :1034-1044
[45]   Fractal dimensions for repellers of maps with holes [J].
Dysman, M .
JOURNAL OF STATISTICAL PHYSICS, 2005, 120 (3-4) :479-509
[46]   CELL-SURFACES AND FRACTAL DIMENSIONS [J].
KEOUGH, KMW ;
HYAM, P ;
PINK, DA ;
QUINN, B .
JOURNAL OF MICROSCOPY-OXFORD, 1991, 163 :95-99
[47]   Apparent fractal dimensions in the HMF model [J].
Sguanci, L ;
Gross, DHE ;
Ruffo, S .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2005, 34 (3-5) :431-440
[48]   The fractal dimensions of the spectrum of Sturm Hamiltonian [J].
Liu, Qing-Hui ;
Qu, Yan-Hui ;
Wen, Zhi-Ying .
ADVANCES IN MATHEMATICS, 2014, 257 :285-336
[49]   Qualitative financial modelling in fractal dimensions [J].
El-Nabulsi, Rami Ahmad ;
Anukool, Waranont .
FINANCIAL INNOVATION, 2025, 11 (01)
[50]   Fractal Dimensions for Repellers of Maps with Holes [J].
Michelle Dysman .
Journal of Statistical Physics, 2005, 120 :479-509