Fractal Dimensions of Umbral and Penumbral Regions of Sunspots

被引:0
作者
B. Rajkumar
S. Haque
W. Hrudey
机构
[1] Department of Physics,University of the West Indies
[2] University College of Cayman Islands,William Hrudey Observatory
来源
Solar Physics | 2017年 / 292卷
关键词
Active regions; Sunspots; Fractal dimensions; Umbra; Penumbra;
D O I
暂无
中图分类号
学科分类号
摘要
The images of sunspots in 16 active regions taken at the University College of the Cayman Islands (UCCI) Observatory on Grand Cayman during June–November 2015 were used to determine their fractal dimensions using the perimeter–area method for the umbral and the penumbral region. Scale-free fractal dimensions of 2.09±0.42\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2.09 \pm0.42$\end{document} and 1.72±0.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1.72 \pm0.4$\end{document} were found, respectively. This value was higher than the value determined by Chumak and Chumak (Astron. Astrophys. Trans.10, 329, 1996), who used a similar method, but only for the penumbral region of their sample set. The umbral and penumbral fractal dimensions for the specific sunspots are positively correlated with r=0.58\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r = 0.58$\end{document}. Furthermore, a similar time-series analysis was performed on eight images of AR 12403, from 21 August 2015 to 28 August 2015 taken from the Debrecen Photoheliographic Data (DPD). The correlation is r=0.623\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r = 0.623$\end{document} between the umbral and penumbral fractal dimensions in the time series, indicating that the complexity in morphology indicated by the fractal dimension between the umbra and penumbra followed each other in time as well.
引用
收藏
相关论文
共 50 条
[31]   Obtaining Homogeneous Regions by Determining the Generalized Fractal Dimensions of Validated Daily Rainfall Data Sets [J].
M. T. Medina-Cobo ;
A. P. García-Marín ;
J. Estévez ;
F. J. Jiménez-Hornero ;
J. L. Ayuso-Muñoz .
Water Resources Management, 2017, 31 :2333-2348
[32]   UMBRAL OSCILLATIONS IN SUNSPOTS - ABSORPTION OF P-MODES AND ACTIVE-REGION HEATING BY MODE CONVERSION [J].
CALLY, PS ;
BOGDAN, TJ ;
ZWEIBEL, EG .
ASTROPHYSICAL JOURNAL, 1994, 437 (01) :505-521
[33]   OBSERVATIONS OF OPPOSITELY DIRECTED UMBRAL WAVEFRONTS ROTATING IN SUNSPOTS OBTAINED FROM THE NEW SOLAR TELESCOPE OF BBSO [J].
Su, J. T. ;
Ji, K. F. ;
Cao, W. ;
Banerjee, D. ;
Priya, T. G. ;
Zhao, J. S. ;
Bai, X. Y. ;
Chen, J. ;
Zhang, M. ;
Ji, H. S. .
ASTROPHYSICAL JOURNAL, 2016, 817 (02)
[34]   A Fractal Analysis of Magnetograms Within Active Regions [J].
Rajkumar, B. ;
Haque, S. .
SOLAR PHYSICS, 2020, 295 (02)
[35]   A Fractal Analysis of Magnetograms Within Active Regions [J].
B. Rajkumar ;
S. Haque .
Solar Physics, 2020, 295
[36]   A Multi-wavelength Analysis of Active Regions and Sunspots by Comparison of Automatic Detection Algorithms [J].
C. Verbeeck ;
P. A. Higgins ;
T. Colak ;
F. T. Watson ;
V. Delouille ;
B. Mampaey ;
R. Qahwaji .
Solar Physics, 2013, 283 :67-95
[37]   A Multi-wavelength Analysis of Active Regions and Sunspots by Comparison of Automatic Detection Algorithms [J].
Verbeeck, C. ;
Higgins, P. A. ;
Colak, T. ;
Watson, F. T. ;
Delouille, V. ;
Mampaey, B. ;
Qahwaji, R. .
SOLAR PHYSICS, 2013, 283 (01) :67-95
[38]   A Unified Approach To Fractal Dimensions [J].
Kinsner, Witold .
INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE, 2007, 1 (04) :26-46
[39]   A Unified Approach To Fractal Dimensions [J].
Kinsner, Witold .
JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 2008, 1 (04) :62-85
[40]   A unified approach to fractal dimensions [J].
Kinsner, W .
ICCI 2005: FOURTH IEEE INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS - PROCEEDINGS, 2005, :58-72