Reconstruction of stability for Gaussian spatial solitons in quintic–septimal nonlinear materials under PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{\mathcal {P}}}}{\varvec{\mathcal {T}}}$$\end{document}-symmetric potentials

被引:2
|
作者
Chao-Qing Dai
Yue-Yue Wang
Yan Fan
Ding-Guo Yu
机构
[1] Zhejiang A&F University,School of Sciences
关键词
Gaussian spatial solitons; Reconstruction of stability; Quintic–septimal nonlinearities; -symmetric potential;
D O I
10.1007/s11071-018-4130-4
中图分类号
学科分类号
摘要
Gaussian spatial soliton solutions of both the constant-coefficient and variable-coefficient (2 + 1)-dimensional nonlinear Schrödinger equations in quintic–septimal nonlinear materials with different diffractions are presented under two kinds of PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}{\mathcal {T}}$$\end{document}-symmetric potentials. The linear stability analysis and direct numerical simulation are jointly utilized to investigate the stability for analytical solutions of the constant-coefficient equation. Results from the linear stability analysis and the direct numerical simulation possess a high degree of consistency, that is, the stable case for Gaussian spatial solitons of the constant-coefficient equation appears only in the defocusing quintic and focusing septimal nonlinear material. Moreover, reconstruction of stable Gaussian spatial solitons of the variable-coefficient equation is studied based on the expression of the effective propagation distance Z(z) by choosing an appropriate form of diffraction β1(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _1(z)$$\end{document}.
引用
收藏
页码:1351 / 1358
页数:7
相关论文
共 50 条