Theoretical Investigation of Phase Diagrams and Compensation Behaviors of a Ferrimagnetic Mixed-Spin (3/2,2) Ising Nanowire with Cylindrical Core-Shell Structure

被引:0
作者
A. Arbaoui
K. Htoutou
L. B. Drissi
R. Ahl Laamara
机构
[1] Mohammed V University in Rabat,LPHE, Modeling & Simulations, Faculty of Science
[2] CRMEF,CPM, Centre of Physics and Mathematics
[3] Centre Régional des Métiers de l’Education et de la Formation,undefined
[4] Faculty of Science,undefined
[5] Mohammed V University in Rabat,undefined
[6] Hassan II Academy of Science and Technology,undefined
来源
Journal of Superconductivity and Novel Magnetism | 2021年 / 34卷
关键词
Effective field theory; Probability distribution technique; Ferrimagnetic; Ising model; Cylindrical core-shell structure; Phase diagrams; Compensation behaviors;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we use effective field theory (EFT) based on the probability distribution technique to study the magnetic properties (phase diagrams and magnetization curves) of a cylindrical mixed-spin (3/2, 2) nanowire. The system has a core-shell composition, where the core consists of 3/2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3/2-$$\end{document}spins coupled to the 2-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2-$$\end{document}spins of the shell in a ferrimagnetic manner. The effect of reduced coupling constants, uniaxial anisotropy on the system, as well as different types of magnetization such as P-type, Q-type, and the N-type characteristic of compensation behavior are investigated.
引用
收藏
页码:3413 / 3423
页数:10
相关论文
共 74 条
[1]  
Winkler N(2012)undefined J. Mater. Chem. 22 16627-24
[2]  
Leuthold J(2016)undefined ACS Nano 10 5326-228
[3]  
Lei Y(2016)undefined Sci. Rep. 6 24189-13
[4]  
Wilde G(2010)undefined J. Magn. Magn. Mater. 322 3414-824
[5]  
Ivanov YP(2011)undefined Solid State Commun. 151 1025-undefined
[6]  
Chuvilin A(2011)undefined J. Magn. Magn. Mater. 323 3168-undefined
[7]  
Lopatin S(2010)undefined J. Magn. Magn. Mater. 322 234-undefined
[8]  
Kosel J(1988)undefined Phys. Status Solidi B 150 261-undefined
[9]  
Ivanov YP(1991)undefined J. Magn. Magn. Mater. 98 201-undefined
[10]  
Alfadhel A(1993)undefined Phys. A 198 665-undefined