Metastability for Kawasaki Dynamics on the Hexagonal Lattice

被引:0
作者
Simone Baldassarri
Vanessa Jacquier
机构
[1] Università degli Studi di Firenze,Dipartimento di Matematica e Informatica “Ulisse Dini”
[2] Aix-Marseille Université,undefined
[3] CNRS,undefined
[4] Centrale Marseille,undefined
[5] I2M UMR CNRS 7373,undefined
[6] Scuola Normale Superiore,undefined
来源
Journal of Statistical Physics | 2023年 / 190卷
关键词
Lattice gas; Kawasaki dynamics; Metastability; Critical droplet; Large deviations; Hexagonal lattice; 60J10; 60K35; 82C20; 82C22; 82C26;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we analyze the metastable behavior for the Ising model that evolves under Kawasaki dynamics on the hexagonal lattice H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^2$$\end{document} in the limit of vanishing temperature. Let Λ⊂H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda \subset {\mathbb {H}}^2$$\end{document} a finite set which we assume to be arbitrarily large. Particles perform simple exclusion on Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda $$\end{document}, but when they occupy neighboring sites they feel a binding energy -U<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-U<0$$\end{document}. Along each bond touching the boundary of Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda $$\end{document} from the outside to the inside, particles are created with rate ρ=e-Δβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho =e^{-\varDelta \beta }$$\end{document}, while along each bond from the inside to the outside, particles are annihilated with rate 1, where β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is the inverse temperature and Δ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta >0$$\end{document} is an activity parameter. For the choice Δ∈(U,32U)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta \in {(U,\frac{3}{2}U)}$$\end{document} we prove that the empty (resp. full) hexagon is the unique metastable (resp. stable) state. We determine the asymptotic properties of the transition time from the metastable to the stable state and we give a description of the critical configurations. We show how not only their size but also their shape varies depending on the thermodynamical parameters. Moreover, we emphasize the role that the specific lattice plays in the analysis of the metastable Kawasaki dynamics by comparing the different behavior of this system with the corresponding system on the square lattice.
引用
收藏
相关论文
共 129 条
  • [1] Apollonio V(2022)Shaken dynamics: an easy way to parallel Markov Chain Monte Carlo J. Stat. Phys. 189 1-23
  • [2] D’Autilia R(2019)Criticality of measures on 2-d Ising configurations: from square to hexagonal graphs J. Stat. Phys. 177 1009-1021
  • [3] Scoppola B(2022)Metastability for the Ising model on the hexagonal lattice Electron. J. Probab. 27 1-48
  • [4] Scoppola E(2021)Metastability in a lattice gas with strong anisotropic interactions under Kawasaki dynamics Electron. J. Probab. 26 1-66
  • [5] Troiani A(2022)Critical Droplets and sharp asymptotics for Kawasaki dynamics with strongly anisotropic interactions J. Stat. Phys. 186 1-46
  • [6] Apollonio V(2022)Critical Droplets and sharp asymptotics for Kawasaki dynamics with weakly anisotropic interactions Stoch. Proc. Appl. 147 107-144
  • [7] D’Autilia R(2010)Tunneling and metastability of continuous time Markov chains J. Stat. Phys. 140 1065-1114
  • [8] Scoppola B(2015)A Martingale approach to metastability Prob. Theory Relat. Fields 161 267-307
  • [9] Scoppola E(2021)Critical configurations and tube of typical trajectories for the Potts and Ising models with zero external field J. Stat. Phys. 184 1-38
  • [10] Troiani A(2022)Metastability for the degenerate Potts Model with negative external magnetic field under Glauber dynamics J. Math. Phys. 63 123303-42