On the Global Well-Posedness of the 3D Axisymmetric Resistive MHD Equations

被引:0
|
作者
Zineb Hassainia
机构
[1] New York University Abu Dhabi,NYUAD Research Institute
来源
Annales Henri Poincaré | 2022年 / 23卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the global well-posedness for the three-dimensional magnetohydrodynamics (MHD) equations with zero viscosity and axisymmetric initial data. First, we analyze the problem corresponding to the Sobolev regularities Hs×Hs-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H^s\times H^{s-2}$$\end{document}, with s>5/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ s>5/2$$\end{document}. Second, we address the same problem but for the Besov critical regularities Bp,13/p+1×Bp,13/p-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ B_{p,1}^{3/p+1}\times B_{p,1}^{3/p-1}$$\end{document}, 2⩽p⩽∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\leqslant p\leqslant \infty $$\end{document}. This case turns out to be more subtle as the Beale–Kato–Majda criterion is not known to be valid for rough regularities.
引用
收藏
页码:2877 / 2917
页数:40
相关论文
共 50 条