In this paper, we prove the global well-posedness for the three-dimensional magnetohydrodynamics (MHD) equations with zero viscosity and axisymmetric initial data. First, we analyze the problem corresponding to the Sobolev regularities Hs×Hs-2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ H^s\times H^{s-2}$$\end{document}, with s>5/2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ s>5/2$$\end{document}. Second, we address the same problem but for the Besov critical regularities Bp,13/p+1×Bp,13/p-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ B_{p,1}^{3/p+1}\times B_{p,1}^{3/p-1}$$\end{document}, 2⩽p⩽∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2\leqslant p\leqslant \infty $$\end{document}. This case turns out to be more subtle as the Beale–Kato–Majda criterion is not known to be valid for rough regularities.