共 36 条
- [1] Bajpai S(2013)Semidiscrete Galerkin method for equations of motion arising in Kelvin-Voigt model of viscoelastic fluid flow Numer. Meth. PDEs 29 857-883
- [2] Nataraj N(2013)On fully discrete finite element schemes for equation of motion of Kelvin-Voight Fluids Int. J. Numer. Anal. Mod. 10 481-507
- [3] Amiya K(2006)Global well-posedness of the three dimensional viscous and inviscid simplified Bardina turbulence models Commun. Math. Sci. 4 823-848
- [4] Damazio P(2002)A viscoelastic model from brain injuries Int. J. Numer. Meth. Fluids 40 303-311
- [5] Yuan JY(2002)On the convergence of viscoelastic fluid flows to a steady state Adv. Diff. Equa. 7 717-742
- [6] Bajpai S(2013)On relaxation time in the Navier-Stokes- Voigt model Int. J. Comput. Fluid Dyn. 27 184-187
- [7] Nataraj N(1973)The uniqueness and global solvability for boundary value problems for the equations of motion of water solutions of polymers Zapiski Nauch. Sem. POMI 38 98-136
- [8] Amiya K(1985)Theory of nonstationary flows of Kelvin-Voigt fluids J. Math. Sci. 28 751-758
- [9] Cao Y(1989)Initial-boundary value problems for equations of motion of Kelvin-Voigt fluids and Oldroyd fluids Proc. Steklov Inst. Math. 2 137-182
- [10] Lunasin E(1992)Non local problems in the theory of the motion equations of Kelvin-Voigt fluids J. Math. Sci. 59 1206-1214