Finite-dimensional perturbations of self-adjoint operators

被引:0
作者
Jonathan Arazy
Leonid Zelenko
机构
[1] University of Haifa,Department of Mathematics
来源
Integral Equations and Operator Theory | 1999年 / 34卷
关键词
Primary 47A55; Secondary 47A11, 47B25;
D O I
暂无
中图分类号
学科分类号
摘要
We study finite-dimensional perturbationsA+γB of a self-adjoint operatorA acting in a Hilbert space\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{H}$$ \end{document}. We obtain asymptotic estimates of eigenvalues of the operatorA+γB in a gap of the spectrum of the operatorA as γ → 0, and asymptotic estimates of their number in that gap. The results are formulated in terms of new notions of characteristic branches ofA with respect to a finite-dimensional subspace of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathfrak{H}$$ \end{document} on a gap of the spectrum σ(A) and asymptotic multiplicities of endpoints of that gap with respect to this subspace. It turns out that ifA has simple spectrum then under some mild conditions these asymptotic multiplicities are not bigger than one. We apply our results to the operator(Af)(t)=tf(t) onL2([0, 1],ρc), whereρc is the Cantor measure, and obtain the precise description of the asymptotic behavior of the eigenvalues ofA+γB in the gaps of\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sigma (A) = \mathfrak{C}$$ \end{document}(= the Cantor set).
引用
收藏
页码:127 / 164
页数:37
相关论文
共 6 条
[1]  
Schrödinger E.(1926)Quantisierung als Eigenwertproblem Annalen der Physik 80 437-490
[2]  
Weyl H.(1909)Über beschränkte quadratische Formen, deren Differenz vollstetig ist Rend. Circolo mat. Palermo 27 375-392
[3]  
Rosenblum M.(1957)Perturbation of the continuous spectrum and unitary equivalence Pacific J. Math. 7 997-1010
[4]  
Kato T.(1957)On finite-dimensional perturbations of selfadjoint operators J. of the Math. Soc. Jap. 9 239-249
[5]  
Kato T.(1957)Perturbation of continuous spectra by the Trace Class Operators Proc. of the Jap. Ac. 33 260-264
[6]  
Krein M. G.(1947)The theory of selfadjoint extensions of semi-bounded Hermitian operators and its applications, Parts I, II Matematicheskii Sbornik 20 431-495