On peaked solitary waves of the Degasperis-Procesi equation

被引:0
作者
ShiJun Liao
机构
[1] Shanghai Jiao Tong University,State Key Laboratory of Ocean Engineering, Dept. of Mathematics, School of Naval Architecture, Ocean and Civil Engineering
来源
Science China Physics, Mechanics and Astronomy | 2013年 / 56卷
关键词
peaked solitary waves; discontinuity; Degasperis-Procesi equation;
D O I
暂无
中图分类号
学科分类号
摘要
The Degasperis-Procesi (DP) equation describing the propagation of shallow water waves contains a physical parameter ω, and it is well-known that the DP equation admits solitary waves with a peaked crest when ω = 0. In this article, we illustrate, for the first time, that the DP equation admits peaked solitary waves even when ω ≠ 0. This is helpful to enrich our knowledge and deepen our understandings about peaked solitary waves of the DP equation.
引用
收藏
页码:418 / 422
页数:4
相关论文
共 50 条
[21]   Traveling wave solutions of the Degasperis-Procesi equation [J].
Lenells, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (01) :72-82
[22]   Infinite propagation speed for the Degasperis-Procesi equation [J].
Henry, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 311 (02) :755-759
[23]   Boundary control of viscosity Degasperis-Procesi equation [J].
Tian, Lixin ;
Shi, Qing ;
Liu, Yue .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) :382-390
[24]   Global weak solutions and breaking waves to the Degasperis-Procesi equation with linear dispersion [J].
Guo, Fei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (02) :345-362
[25]   Solitary-wave solutions of the Degasperis-Procesi equation by means of the homotopy analysis method [J].
Abbasbandy, S. ;
Parkes, E. J. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (10) :2303-2313
[26]   A CONSERVATIVE DISCONTINUOUS GALERKIN METHOD FOR THE DEGASPERIS-PROCESI EQUATION [J].
Liu, Hailiang ;
Huang, Yunqing ;
Yi, Nianyu .
METHODS AND APPLICATIONS OF ANALYSIS, 2014, 21 (01) :67-90
[27]   Stabilization of a new periodic integrable equation: The Degasperis-Procesi equation [J].
Zong, Xiju ;
Zhao, Yi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (11) :3167-3175
[28]   Conservative finite difference schemes for the Degasperis-Procesi equation [J].
Miyatake, Yuto ;
Matsuo, Takayasu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (15) :3728-3740
[29]   THE STRUCTURE-PRESERVING METHODS FOR THE DEGASPERIS-PROCESI EQUATION [J].
Zhang, Yuze ;
Wang, Yushun ;
Yang, Yanhong .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2019, 37 (04) :475-487
[30]   The Degasperis-Procesi equation as a non-metric Euler equation [J].
Escher, Joachim ;
Kolev, Boris .
MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (3-4) :1137-1153