Realization of Boolean functions by formulas in continuous bases containing a continuum of constants

被引:0
|
作者
Ya. V. Vegner
S. B. Gashkov
机构
[1] Moscow State University,
来源
Mathematical Notes | 2012年 / 92卷
关键词
Boolean function; complexity of the realization of Boolean functions; Shannon function; Lipschitz condition; continuous basis; almost-finite basis;
D O I
暂无
中图分类号
学科分类号
摘要
For an arbitrary Boolean function of n variables, we show how to construct formulas of complexity O(2n/2) in the bases \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {x - y,xy,\left| x \right|} \right\}\bigcup {\left[ {0,1} \right], } \left\{ {x - y,x*y,2x,\left| x \right|} \right\}\bigcup {\left[ {0,1} \right],}$$\end{document}, where x * y = max(−1, min(1, x))max(−1, min(1, y)). The obtained estimates are, in general, order-sharp.
引用
收藏
页码:166 / 175
页数:9
相关论文
共 50 条