Congruence structure of planar semimodular lattices: the General Swing Lemma

被引:0
|
作者
Gábor Czédli
George Grätzer
Harry Lakser
机构
[1] University of Szeged,Bolyai Institute
[2] University of Manitoba,Department of Mathematics
来源
Algebra universalis | 2018年 / 79卷
关键词
Lattice; Congruence; Semimodular Slim; Planar; Swing Lemma; 06C10; 06B05;
D O I
暂无
中图分类号
学科分类号
摘要
The Swing Lemma, proved by G. Grätzer in 2015, describes how a congruence spreads from a prime interval to another in a slim (having no M3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {M}_{3}$$\end{document} sublattice), planar, semimodular lattice. We generalize the Swing Lemma to planar semimodular lattices.
引用
收藏
相关论文
共 50 条