Tight-binding theory of graphene mechanical properties

被引:0
作者
Kun Huang
Yajun Yin
Benning Qu
机构
[1] Kunming University of Science and Technology,Department of Engineering Mechanics, School of Civil Engineering and Mechanics
[2] Kunming University of Science and Technology,Yunnan Key Laboratory of Disaster Reduction in Civil Engineering
[3] Tsinghua University,Department of Engineering Mechanics, School of Aerospace
来源
Microsystem Technologies | 2021年 / 27卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Since the atomistic mechanism against monolayer graphene deformations has not been well comprehended, modeling graphene’s mechanical properties is still an open question. The torsional stiffness associated with Gaussian curvature, in particular, is extremely difficult to understand and estimate via either experiments or simulations. In this paper, using the bond-orbital model (BOM) based on the tight-binding (TB) method, we find out that graphene can be model as the Föppl-von Karman plate with four independent mechanical parameters, and present the clear connections between the mechanical parameters and the chemical bonds for the first time. Our TB theory reveals that the Gaussian modulus only relies on the torsion of the adjacent π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi$$\end{document}-orbitals, and elucidates that the independence between out-of-plane and in-plane mechanical parameters comes from the geometrical irrelevance between the bond-formation energy of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document}-bonds and that of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi$$\end{document}-bonds. Besides, the constraints on two out-of-plane mechanical parameters are given through the thermodynamic stability requirement: the Gaussian modulus kG<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{G} < 0$$\end{document} and the bending modulus kB>-kG/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_{B} > - k_{G} /2$$\end{document}. The mechanical parameters obtained by our TB theory are well agreed with experiments and Quantum calculations.
引用
收藏
页码:3851 / 3858
页数:7
相关论文
共 129 条
  • [1] Akinwande D(2017)A review on mechanics and mechanical properties of 2D materials—graphene and beyond Extreme Mech Lett 13 42-5050
  • [2] Atalaya J(2008)Continuum elastic modeling of graphene resonators Nano Lett 8 4196-411
  • [3] Isacsson A(1989)Lattice relaxation around substitutional defects in semiconductors Phys Rev B 39 5041-356
  • [4] Kinaret JM(2010)Elastic properties of graphene flakes: boundary effects and lattice vibrations Phys Rev B 82 195445-1076
  • [5] Bechstedt F(2002)A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons J Phys Condensed Matter 14 783-1082
  • [6] Harrison WA(2008)Impermeable atomic membranes from graphene sheets Nano Lett 8 2458-182
  • [7] Bera S(2009)Nonlinear elasticity of monolayer graphene Phys Rev Lett 102 235502-undefined
  • [8] Arnold A(2015)Bending stiffness and interlayer shear modulus of few-layer graphene Appl Phys Lett 106 101907-undefined
  • [9] Evers F(1991)Growth regimes of carbon clusters Phys Rev Lett 67 2331-undefined
  • [10] Narayanan R(2017)The Gaussian stiffness of graphene deduced from a continuum model based on Molecular Dynamics potentials J Mech Phys Solids 104 96-undefined