Nonlinear recurrences related to Chebyshev polynomials

被引:0
作者
Karl Dilcher
Kenneth B. Stolarsky
机构
[1] Dalhousie University,Department of Mathematics and Statistics
[2] University of Illinois,Department of Mathematics
来源
The Ramanujan Journal | 2016年 / 41卷
关键词
Recurrence relations; Polynomial sequences; Chebyshev polynomials; Zeros; Irreducibility; Primary: 30C15; Secondary: 33C45; 12E05;
D O I
暂无
中图分类号
学科分类号
摘要
We use two nonlinear recurrence relations to define the same sequence of polynomials, a sequence resembling the Chebyshev polynomials of the first kind. Among other properties, we obtain results on their irreducibility and zero distribution. We then study the 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} Hankel determinants of these polynomials, which have interesting zero distributions. Furthermore, if these polynomials are split into two halves, then the zeros of one half lie in the interval (-1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-1,1)$$\end{document}, while those of the other half lie on the unit circle. Some further extensions and generalizations of these results are indicated.
引用
收藏
页码:147 / 169
页数:22
相关论文
共 3 条
[1]  
Dilcher K(1992)Sequences of polynomials whose zeros lie on fixed lemniscates Period. Math. Hung. 25 179-190
[2]  
Stolarsky KB(1988)Divisibility—with visibility Math. Intell. 10 56-64
[3]  
Sved M(undefined)undefined undefined undefined undefined-undefined