Rates of convergence for a class of rank tests for independence

被引:0
作者
Conti P.L. [1 ]
Nikitin Y.Y. [2 ]
机构
[1] Department of Statistical Sciences, University of Bologna
基金
俄罗斯基础研究基金会;
关键词
Rank Correlation; Rank Test; Large Class; Optimal Rate; Rank Statistic;
D O I
10.1023/A:1014529400065
中图分类号
学科分类号
摘要
An almost optimal rate of convergence estimate is obtained for a large class of rank statistics for testing independence, including Gini's and Spearman's rank correlation coefficients as well as Spearman's footrule. ©2002 Plenum Publishing Corporation.
引用
收藏
页码:2141 / 2147
页数:6
相关论文
共 18 条
  • [11] Hallin M., Puri M.L., Some asymptotic results for a broad class of nonparametric statistics, J. Stat. Plann. Infer., 32, pp. 165-196, (1992)
  • [12] Kendall M.G., Rank Correlation Methods (4th Ed.), (1970)
  • [13] Massart P., The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality, Ann. Prob., 18, pp. 1269-1283, (1990)
  • [14] Puri M.L., Sen P.K., Nonparametric Methods in Multivariate Analysis, (1971)
  • [15] Ruymgaart F.H., Asymptotic normality of nonparametric tests for independence, Ann. Statist., 2, pp. 892-910, (1974)
  • [16] Serfling R.J., Approximation Theorems of Mathematical Statistics, (1980)
  • [17] Spearman C., The proof and measurement of association between two things, Am. J. Psychol., 15, pp. 72-101, (1904)
  • [18] Spearman C., Footrule' for measuring correlation, Brit. J. Psychol., 2, pp. 89-108, (1906)