Harnack inequality and derivative formula for SDE driven by fractional Brownian motion

被引:0
作者
XiLiang Fan
机构
[1] Beijing Normal University,School of Mathematical Sciences
[2] Anhui Normal University,Department of Mathematics
来源
Science China Mathematics | 2013年 / 56卷
关键词
Harnack inequality; stochastic differential equation; fractional Brownian motion; 60H10; 60H30;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, Harnack inequality and derivative formula are established for stochastic differential equation driven by fractional Brownian motion with Hurst parameter H < 1/2. As applications, strong Feller property, log-Harnack inequality and entropy-cost inequality are given.
引用
收藏
页码:515 / 524
页数:9
相关论文
共 41 条
  • [1] Abdelhadi E. S.(2009)Harnack inequality for functional SDEs with bounded memory Electron Commun Probab 14 560-565
  • [2] Renesse M.-K. V.(2001)Short time asymptotics of a certain infinite dimensional diffusion process Stoch Anal Relat Top 48 77-124
  • [3] Scheutzow M.(2002)On the small time asymptotics of diffusion processes on path groups Potential Anal 16 67-78
  • [4] Aida S.(2001)Stochastic calculus with respect to Gaussian processes Ann Probab 29 766-801
  • [5] Kawabi H.(2006)Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below Bull Sci Math 130 223-233
  • [6] Aida S.(2009)Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds Stoch Proc Appl 119 3653-3670
  • [7] Zhang T.(2001)Hypercontractivity of Hamilton-Jacobi equations J Math Pures Appl 80 669-696
  • [8] Alòs E.(2002)Stochastic analysis, rough path analysis and fractional Brownian motions Probab Theory Related Fields 122 108-140
  • [9] Mazet O.(1998)Stochastic analysis of the fractional Brownian motion Potential Anal 10 177-214
  • [10] Nualart D.(2001)Heat kernel estimates with applications to compactness of manifolds Quart J Math 52 171-180