共 50 条
[41]
The weak solutions of a doubly nonlinear parabolic equation related to the p(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$p(x)$\end{document}-Laplacian
[J].
Advances in Difference Equations,
2019 (1)
[42]
A degenerate Kirchhoff-type problem involving variable s(·)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s(\cdot )$$\end{document}-order fractional p(·)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p(\cdot )$$\end{document}-Laplacian with weights
[J].
Periodica Mathematica Hungarica,
2024, 88 (2)
:396-411
[43]
Limit problems for a Fractional p-Laplacian as p→∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${p\to\infty}$$\end{document}
[J].
Nonlinear Differential Equations and Applications NoDEA,
2016, 23 (2)
[44]
On Symmetric Solutions for (p, q)-Laplacian Equations in RN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {R}}^N$$\end{document} with Critical Terms
[J].
The Journal of Geometric Analysis,
2022, 32 (4)
[45]
Existence result for nonlinear fractional differential equation with p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p$$\end{document}-Laplacian operator at resonance
[J].
Journal of Applied Mathematics and Computing,
2015, 48 (1-2)
:519-532
[46]
Weak Solutions for a System Involving Anisotropic p→(·),q→(·)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( \overrightarrow{p}(\cdot ), \overrightarrow{q}(\cdot )\right) $$\end{document}-Laplacian Operators
[J].
Iranian Journal of Science,
2024, 48 (5)
:1253-1263
[47]
Multiplicity of solutions for fractional p(z)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$p ( z ) $\end{document}-Kirchhoff-type equation
[J].
Journal of Inequalities and Applications,
2024 (1)
[48]
Lp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^p$$\end{document} Bilinear Quasimode Estimates
[J].
The Journal of Geometric Analysis,
2019, 29 (3)
:2242-2289
[49]
Harnack’s Inequality of Weak Type for the Parabolic \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p (x)$$\end{document}-Laplacian
[J].
Mathematical Notes,
2022, 111 (1-2)
:161-165
[50]
p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varvec{p}$$\end{document}-Laplacian problems involving critical Hardy–Sobolev exponents
[J].
Nonlinear Differential Equations and Applications NoDEA,
2018, 25 (3)