Existence and multiplicity of weak solutions for a nonlinear impulsive (q,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(q,p)$\end{document}-Laplacian dynamical system

被引:0
作者
Xiaoxia Yang
机构
[1] Central South University,School of Mathematics and Statistics
关键词
-Laplacian; existence; multiplicity; nontrivial solution; variational methods; 34C25; 58E50;
D O I
10.1186/s13662-017-1145-y
中图分类号
学科分类号
摘要
In this paper, we investigate the existence and multiplicity of nontrivial weak solutions for a class of nonlinear impulsive (q,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(q,p)$\end{document}-Laplacian dynamical systems. The key contributions of this paper lie in (i) Exploiting the least action principle, we deduce that the system we are interested in has at least one weak solution if the potential function has sub-(q,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(q,p)$\end{document} growth or (q,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(q,p)$\end{document} growth; (ii) Employing a critical point theorem due to Ding (Nonlinear Anal. 25(11):1095-1113, 1995), we derive that the system involved has infinitely many weak solutions provided that the potential function is even.
引用
收藏
相关论文
共 50 条
[42]   A degenerate Kirchhoff-type problem involving variable s(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s(\cdot )$$\end{document}-order fractional p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(\cdot )$$\end{document}-Laplacian with weights [J].
Mostafa Allaoui ;
Mohamed Karim Hamdani ;
Lamine Mbarki .
Periodica Mathematica Hungarica, 2024, 88 (2) :396-411
[43]   Limit problems for a Fractional p-Laplacian as p→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p\to\infty}$$\end{document} [J].
Raúl Ferreira ;
Mayte Pérez-Llanos .
Nonlinear Differential Equations and Applications NoDEA, 2016, 23 (2)
[44]   On Symmetric Solutions for (p, q)-Laplacian Equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document} with Critical Terms [J].
Laura Baldelli ;
Ylenia Brizi ;
Roberta Filippucci .
The Journal of Geometric Analysis, 2022, 32 (4)
[45]   Existence result for nonlinear fractional differential equation with p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-Laplacian operator at resonance [J].
Lei Hu ;
Shuqin Zhang ;
Ailing Shi .
Journal of Applied Mathematics and Computing, 2015, 48 (1-2) :519-532
[46]   Weak Solutions for a System Involving Anisotropic p→(·),q→(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \overrightarrow{p}(\cdot ), \overrightarrow{q}(\cdot )\right) $$\end{document}-Laplacian Operators [J].
A. Razani ;
F. Safari ;
T. Soltani .
Iranian Journal of Science, 2024, 48 (5) :1253-1263
[47]   Multiplicity of solutions for fractional p(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p ( z ) $\end{document}-Kirchhoff-type equation [J].
Tahar Bouali ;
Rafik Guefaifia ;
Salah Boulaaras .
Journal of Inequalities and Applications, 2024 (1)
[48]   Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} Bilinear Quasimode Estimates [J].
Zihua Guo ;
Xiaolong Han ;
Melissa Tacy .
The Journal of Geometric Analysis, 2019, 29 (3) :2242-2289
[50]   p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}$$\end{document}-Laplacian problems involving critical Hardy–Sobolev exponents [J].
Kanishka Perera ;
Wenming Zou .
Nonlinear Differential Equations and Applications NoDEA, 2018, 25 (3)