Existence and multiplicity of weak solutions for a nonlinear impulsive (q,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(q,p)$\end{document}-Laplacian dynamical system

被引:0
作者
Xiaoxia Yang
机构
[1] Central South University,School of Mathematics and Statistics
关键词
-Laplacian; existence; multiplicity; nontrivial solution; variational methods; 34C25; 58E50;
D O I
10.1186/s13662-017-1145-y
中图分类号
学科分类号
摘要
In this paper, we investigate the existence and multiplicity of nontrivial weak solutions for a class of nonlinear impulsive (q,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(q,p)$\end{document}-Laplacian dynamical systems. The key contributions of this paper lie in (i) Exploiting the least action principle, we deduce that the system we are interested in has at least one weak solution if the potential function has sub-(q,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(q,p)$\end{document} growth or (q,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(q,p)$\end{document} growth; (ii) Employing a critical point theorem due to Ding (Nonlinear Anal. 25(11):1095-1113, 1995), we derive that the system involved has infinitely many weak solutions provided that the potential function is even.
引用
收藏
相关论文
共 50 条
[31]   Existence of radial solutions for a p(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p(x)$\end{document}-Laplacian Dirichlet problem [J].
Maria Alessandra Ragusa ;
Abdolrahman Razani ;
Farzaneh Safari .
Advances in Difference Equations, 2021 (1)
[33]   Three positive solutions for a nonlinear partial discrete Dirichlet problem with (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-Laplacian operator [J].
Feng Xiong ;
Zhan Zhou .
Boundary Value Problems, 2022 (1)
[34]   The Douglas formula in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} [J].
Krzysztof Bogdan ;
Damian Fafuła ;
Artur Rutkowski .
Nonlinear Differential Equations and Applications NoDEA, 2023, 30 (4)
[35]   Five solutions for the fractional p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {p}$$\end{document}-Laplacian with noncoercive energy [J].
Silvia Frassu ;
Antonio Iannizzotto .
Nonlinear Differential Equations and Applications NoDEA, 2022, 29 (4)
[36]   Multiplicity and concentration results for a (p, q)-Laplacian problem in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{N}$$\end{document} [J].
Vincenzo Ambrosio ;
Dušan Repovš .
Zeitschrift für angewandte Mathematik und Physik, 2021, 72 (1)
[37]   Multiple positive solutions for a fractional p&q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p \& q$$\end{document}-Laplacian system with concave and critical nonlinearities [J].
Rachid Echarghaoui ;
Moussa Khouakhi ;
Mohamed Masmodi .
Journal of Elliptic and Parabolic Equations, 2023, 9 (2) :781-805
[38]   Stability of the Norm-Eigenfunctions of the p(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p(\cdot)}$$\end{document}-Laplacian [J].
Jan Lang ;
Osvaldo Méndez .
Integral Equations and Operator Theory, 2016, 85 (2) :245-257
[40]   On the ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-Caputo Impulsive p-Laplacian Boundary Problem: An Existence Analysis [J].
Farid Chabane ;
Maamar Benbachir ;
Sina Etemad ;
Shahram Rezapour ;
İbrahim Avcı .
Qualitative Theory of Dynamical Systems, 2024, 23 (3)