Existence and multiplicity of weak solutions for a nonlinear impulsive (q,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(q,p)$\end{document}-Laplacian dynamical system

被引:0
作者
Xiaoxia Yang
机构
[1] Central South University,School of Mathematics and Statistics
关键词
-Laplacian; existence; multiplicity; nontrivial solution; variational methods; 34C25; 58E50;
D O I
10.1186/s13662-017-1145-y
中图分类号
学科分类号
摘要
In this paper, we investigate the existence and multiplicity of nontrivial weak solutions for a class of nonlinear impulsive (q,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(q,p)$\end{document}-Laplacian dynamical systems. The key contributions of this paper lie in (i) Exploiting the least action principle, we deduce that the system we are interested in has at least one weak solution if the potential function has sub-(q,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(q,p)$\end{document} growth or (q,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(q,p)$\end{document} growth; (ii) Employing a critical point theorem due to Ding (Nonlinear Anal. 25(11):1095-1113, 1995), we derive that the system involved has infinitely many weak solutions provided that the potential function is even.
引用
收藏
相关论文
共 31 条
[1]  
Ding YH(1995)Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems Nonlinear Anal. 25 1095-1113
[2]  
Chen H(2010)An application of variational method to second-order impulsive functional differential equation on the half-line Appl. Math. Comput. 217 1863-1869
[3]  
Sun J(2010)On the structure of the critical set of non-differentiable functions with a weak compactness condition Appl. Anal. 89 1-10
[4]  
Bonanno G(2013)The existence and multiplicity of solutions for second-order impulsive differential equations on the half-line Results Math. 63 135-149
[5]  
Marano SA(2001)Variant fountain theorems and their applications Manuscr. Math. 104 343-358
[6]  
Dai B(2010)Periodic solutions of a class of nonautonomous second-order differential systems with Bull. Belg. Math. Soc. Simon Stevin 17 841-850
[7]  
Zhang D(2010)-Laplacian Appl. Math. Lett. 23 246-251
[8]  
Zou W(2011)Some existence results on periodic solutions of nonautonomous second-order differential systems with J. Appl. Math. Inform. 29 39-48
[9]  
Pasca D(2012)-Laplacian J. Appl. Math. Comput. 40 607-625
[10]  
Pasca D(2011)Some existence results on periodic solutions of ordinary J. Appl. Math. 2011 945-964