Constructing Fourier Transforms on the Quantum E(2)-Group

被引:0
作者
Jeroen Noels
机构
[1] Katholieke Universiteit Leuven,Department wiskunde
来源
Algebras and Representation Theory | 2004年 / 7卷
关键词
quantum group; quantum plane; Euclidean motions; Fourier transform; group duality; -Bessel function; -Hankel transform; -moment problem; Plancherel formula;
D O I
暂无
中图分类号
学科分类号
摘要
In a previous article we proposed an algebraic setting in which to perform harmonic analysis on noncompact, nondiscrete quantum groups and in particular, on quantum E(2). In the present paper we shall explicitly construct Fourier transforms between quantum E(2) and its Pontryagin dual, involving Hahn—Exton q-Bessel functions as kernel, prove Plancherel and inversion formulas, etc. We also develop a theory of q-Hankel transformation of entire functions, based on the definition proposed by Koornwinder and Swarttouw.
引用
收藏
页码:101 / 138
页数:37
相关论文
共 13 条
  • [1] Koelink H. T.(1994)On the zeros of the Hahn-Exton J. Math. Anal. Appl. 186 690-710
  • [2] Swtarttouw R. F.(1992)-Bessel function and associated Trans. Amer. Math. Soc. 333 445-461
  • [3] Koornwinder T. H.(2002)-Lommel polynomials Comm. Algebra 30 693-743
  • [4] Swarttouw R. F.(1993)On Bull. London Math. Soc. 25 209-230
  • [5] Noels J.(1998)-analogues of the Fourier and Hankel transforms Adv. Math. 140 323-366
  • [6] Van Daele A.(1996)An algebraic framework for harmonic analysis on the quantum Pacific J. Math. 173 375-385
  • [7] Van Daele A.(1989)2 Soviet Math. Dokl. 39 173-177
  • [8] Van Daele A.(1991) group Lett. Math. Phys. 23 251-263
  • [9] Woronowicz S. L.(1991)Dual pairs of Hopf *-algebras Comm. Math. Phys. 136 399-432
  • [10] Vaksman L. L.(undefined)An algebraic framework for group duality undefined undefined undefined-undefined