Generic Well-Posedness of Fixed Point Problems

被引:16
作者
Reich S. [1 ]
Zaslavski A.J. [1 ]
机构
[1] Department of Mathematics, The Technion – Israel Institute of Technology, Haifa
基金
以色列科学基金会;
关键词
Affine mapping; Complete metric space; Fixed point; Nonexpansive mapping; Order-preserving mapping; Well-posedness;
D O I
10.1007/s10013-017-0251-1
中图分类号
学科分类号
摘要
We study generic well-posedness of fixed point problems for certain complete metric spaces of mappings. We first establish the equivalence of this generic well-posedness to certain assumptions which are not difficult to verify. Then, we show that several known results in the literature can be deduced from these equivalences. © 2017, Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore.
引用
收藏
页码:5 / 13
页数:8
相关论文
共 24 条
  • [1] Adly S., Dontchev A.L., Thera M., On one-sided Lipschitz stability of set-valued contractions, Numer. Funct. Anal. Optim., 35, pp. 837-850, (2014)
  • [2] Banach S., Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3, pp. 133-181, (1922)
  • [3] Betiuk-Pilarska A., Dominguez Benavides T., Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices, Pure Appl. Funct. Anal., 1, pp. 343-359, (2016)
  • [4] de Blasi F.S., Myjak J., Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach, C. R. Acad. Sci. Paris, 283, pp. 185-187, (1976)
  • [5] de Blasi F.S., Myjak J., Sur la porosité de l’ensemble des contractions sans point fixe, C. R. Acad. Sci. Paris, 308, pp. 51-54, (1989)
  • [6] de Blasi F.S., Myjak J., Reich S., Zaslavski A.J., Generic existence and approximation of fixed points for nonexpansive set-valued maps, Set-Valued Var. Anal., 17, pp. 97-112, (2009)
  • [7] Goebel K., Kirk W.A., Topics in Metric Fixed Point Theory, (1990)
  • [8] Goebel K., Reich S., Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, (1984)
  • [9] Kirk W.A., Contraction mappings and extensions, Handbook of Metric Fixed Point Theory, pp. 1-34, (2001)
  • [10] Kubota R., Takahashi W., Takeuchi Y., Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applications, Pure Appl. Funct. Anal., 1, pp. 63-84, (2016)