The completion of optimal cyclic quaternary codes of weight 3 and distance 3

被引:0
作者
Liantao Lan
Yanxun Chang
Lidong Wang
机构
[1] South China Agricultural University,College of Mathematics and Informatics
[2] Beijing Jiaotong University,Department of Mathematics
[3] China People’s Police University,School of Intelligence Policing
[4] South China Normal University,School of Computer Science
来源
Designs, Codes and Cryptography | 2022年 / 90卷
关键词
Optimal construction; Cyclic code; Constant-weight code; Multi-ary code; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
A cyclic (n,d,w)q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n,d,w)_q$$\end{document} code is a cyclic q-ary code of length n, constant weight w and Hamming distance at least d. The function CAq(n,d,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CA_{q}(n,d,w)$$\end{document} denotes the largest possible size of a cyclic (n,d,w)q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n,d,w)_q$$\end{document} code. A new construction, which is based on two (n, 2, 1) cyclic difference packings with given properties, is proposed for optimal (n,3,3)4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n, 3, 3)_4$$\end{document} codes. As a result, the exact value of CA4(n,3,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CA_{4}(n,3,3)$$\end{document} is determined for n≡18(mod24)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \equiv 18\pmod {24}$$\end{document}, and the spectrum of CA4(n,3,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CA_{4}(n,3,3)$$\end{document} is then completely determined.
引用
收藏
页码:851 / 862
页数:11
相关论文
共 55 条
[1]  
Bao J(2015)Orbit-disjoint regular ( Finite Fields Appl. 35 139-158
[2]  
Ji L(1995))-CDPs and their applications to multilength OOCs IEEE Trans. Inf. Theory 41 77-87
[3]  
Li Y(1987)Constructions for optimal constant weight cyclically permutable codes and difference families Congr. Numer. 58 175-192
[4]  
Wang C(1990)Optical orthogonal codes and cyclic block designs IEEE Trans. Inf. Theory 36 1334-1380
[5]  
Bitan S(2002)A new table of constant weight codes Des. Codes Cryptogr. 26 111-125
[6]  
Etzion T(2004)Cyclic designs with block size 4 and related optimal optical orthogonal codes J. Comb. Des. 12 346-361
[7]  
Brickell EF(2003)Optimal ( IEEE Trans. Inf. Theory 49 1283-1292
[8]  
Wei VK(2004)) optical orthogonal codes Discret. Math. 279 135-151
[9]  
Brouwer AE(2007)Combinatorial constructions of optimal optical orthogonal codes with weight 4 IEEE Trans. Inf. Theory 53 135-146
[10]  
Shearer JB(1999)Further results on optimal optical orthogonal codes with weight 4 J. Comb. Des. 7 21-30