Asymptotics of the Airy-Kernel Determinant

被引:0
作者
P. Deift
A. Its
I. Krasovsky
机构
[1] Courant Institute of Mathematical Sciences,Department of Mathematical Sciences
[2] Indiana University – Purdue University Indianapolis,Department of Mathematical Sciences
[3] Brunel University,undefined
来源
Communications in Mathematical Physics | 2008年 / 278卷
关键词
Orthogonal Polynomial; Jump Condition; Random Matrix Theory; Fredholm Determinant; Differential Identity;
D O I
暂无
中图分类号
学科分类号
摘要
The authors use Riemann-Hilbert methods to compute the constant that arises in the asymptotic behavior of the Airy-kernel determinant of random matrix theory.
引用
收藏
页码:643 / 678
页数:35
相关论文
共 58 条
[1]  
Baik J.(1999)On the distribution of the length of the longest increasing subsequence of random permutations J. Amer. Math. Soc. 12 1119-1178
[2]  
Deift P.(2002)Fredholm determinants, Jimbo-Miwa-Ueno τ-functions, and representation theory Comm. Pure Appl. Math. 55 1160-1230
[3]  
Johansson K.(1999)Integrable operators Amer. Math. Soc. Transl. (2) 189 69-84
[4]  
Borodin A.(2007)Universality at the edge of the spectrum for unitary, orthogonal and symplectic ensembles of random matrices Comm. Pure. Appl. Math. 60 867-910
[5]  
Deift P.(1997)A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics Ann. Math 146 149-235
[6]  
Deift P.(1993)A steepest descent method for oscillatory Riemann-Hilbert problem Ann. Math. 137 295-368
[7]  
Deift P.(1995)Asymptotics for the Painlevé II equation Comm. Pure Appl. Math. 48 277-337
[8]  
Gioev D.(2002)A priori Int. Math. Res. Notes 40 2121-2154
[9]  
Deift P.(2003) estimates for solutions of Riemann-Hilbert problems Comm. Pure Appl. Math. 56 1029-1077
[10]  
Its A.(1997)Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space Int. Math. Res. Not. 1997 286-299