Full Lagrangian and Hamiltonian for quantum strings on AdS4 × CP3 in a near plane wave limit

被引:0
作者
Davide Astolfi
Valentina Giangreco M. Puletti
Gianluca Grignani
Troels Harmark
Marta Orselli
机构
[1] Università di Perugia,Dipartimento di Fisica
[2] I.N.F.N. Sezione di Perugia,undefined
[3] NORDITA,undefined
[4] The Niels Bohr Institute,undefined
来源
Journal of High Energy Physics | / 2010卷
关键词
Penrose limit and pp-wave background; Superstrings and Heterotic Strings; AdS-CFT Correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
We find the full interacting Lagrangian and Hamiltonian for quantum strings in a near plane wave limit of AdS4 × \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{C} $$\end{document}P3. The leading curvature corrections give rise to cubic and quartic terms in the Lagrangian and Hamiltonian that we compute in full. The Lagrangian is found as the type IIA Green-Schwarz superstring in the light-cone gauge employing a superspace construction with 32 grassmann-odd coordinates. The light-cone gauge for the fermions is non-trivial since it should commute with the supersymmetry condition. We provide a prescription to properly fix the κ-symmetry gauge condition to make it consistent with light-cone gauge. We use fermionic field redefinitions to find a simpler Lagrangian. To construct the Hamiltonian a Dirac procedure is needed in order to properly keep into account the fermionic second class constraints. We combine the field redefinition with a shift of the fermionic phase space variables that reduces Dirac brackets to Poisson brackets. This results in a completely well-defined and explicit expression for the full interacting Hamiltonian up to and including terms quartic in the number of fields.
引用
收藏
相关论文
共 149 条
[1]  
Maldacena JM(1998)The large-N limit of superconformal field theories and supergravity Adv. Theor. Math. Phys. 2 231-undefined
[2]  
Schwarz JH(2004)Superconformal Chern-Simons theories JHEP 11 078-undefined
[3]  
Gaiotto D(2007)Notes on superconformal Chern-Simons-matter theories JHEP 08 056-undefined
[4]  
Yin X(2008)N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals JHEP 10 091-undefined
[5]  
Aharony O(2008)The Bethe ansatz for superconformal Chern-Simons JHEP 09 040-undefined
[6]  
Bergman O(2009)Spin chains in N = 6 superconformal Chern-Simons-matter theory JHEP 04 066-undefined
[7]  
Jafferis DL(2008)Superstrings on AdS JHEP 09 129-undefined
[8]  
Maldacena J(2009) × CP Nucl. Phys. B 808 80-undefined
[9]  
Minahan JA(2009) as a coset σ-model Nucl. Phys. B 810 115-undefined
[10]  
Zarembo K(2009)Green-Schwarz action for type IIA strings on AdS JHEP 01 016-undefined