Consistency of Microcanonical and Canonical Finite-Size Scaling

被引:0
作者
M. Kastner
M. Promberger
机构
[1] Friedrich–Alexander-Universität Erlangen-Nürnberg,Institut für Theoretische Physik
来源
Journal of Statistical Physics | 2001年 / 103卷
关键词
finite-size scaling; microcanonical ensemble; critical phenomena;
D O I
暂无
中图分类号
学科分类号
摘要
Typically, in order to obtain finite-size scaling laws for quantities in the microcanonical ensemble, an assumption is taken as a starting point. In this paper, consistency of such a Microcanonical Finite-Size Scaling Assumption with its commonly accepted canonical counterpart is shown, which puts Microcanonical Finite-Size Scaling on a firmer footing.
引用
收藏
页码:893 / 902
页数:9
相关论文
共 12 条
[1]  
Lee J.(1990)New numerical method to study phase transitions Phys. Rev. Lett. 65 137-undefined
[2]  
Kosterlitz J. M.(1997)Tricriticality and the Blume-Capel model: A Monte Carlo study within the microcanonical ensemble Phys. Rev. E 56 5204-undefined
[3]  
Deserno M.(1988)Finite-size scaling in a microcanonical ensemble J. Stat. Phys. 53 795-undefined
[4]  
Desai R. C.(1999)Critical-point finite-size scaling in the microcanonical ensemble Phys. Rev. E 60 3748-undefined
[5]  
Heermann D. W.(1977)Static and dynamic finite-size scaling theory based on the renormalization group approach Prog. Theoret. Phys. 58 1142-undefined
[6]  
Binder K.(1982)An investigation of finite size scaling J. Phys. (Paris) 43 15-undefined
[7]  
Bruce A. D.(1999)Violation of finite-size scaling in three dimensions Eur. Phys. J. B 10 687-undefined
[8]  
Wilding N. B.(undefined)undefined undefined undefined undefined-undefined
[9]  
Suzuki M.(undefined)undefined undefined undefined undefined-undefined
[10]  
Brézin E.(undefined)undefined undefined undefined undefined-undefined