On the multiparameterized fractional multiplicative integral inequalities

被引:22
作者
Almatrafi, Mohammed Bakheet [1 ]
Saleh, Wedad [1 ]
Lakhdari, Abdelghani [2 ]
Jarad, Fahd [3 ,4 ]
Meftah, Badreddine [5 ]
机构
[1] Taibah Univ, Coll Sci, Dept Math, Medina, Saudi Arabia
[2] Natl Higher Sch Technol & Engn, Dept CPST, Annaba 23005, Algeria
[3] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06790 Ankara, Turkiye
[4] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat, Kuwait, Kuwait
[5] Univ 8 May 1945 Guelma, Dept Math, Guelma, Algeria
关键词
Multiparameterized identity; Integral inequalities; Fractional multiplicative integral; Multiplicative s-convexity; HADAMARD TYPE INEQUALITIES; CALCULUS;
D O I
10.1186/s13660-024-03127-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a novel multiparameterized fractional multiplicative integral identity and utilize it to derive a range of inequalities for multiplicatively s-convex mappings in connection with different quadrature rules involving one, two, and three points. Our results cover both new findings and established ones, offering a holistic framework for comprehending these inequalities. To validate our outcomes, we provide an illustrative example with visual aids. Furthermore, we highlight the practical significance of our discoveries by applying them to special means of real numbers within the realm of multiplicative calculus.
引用
收藏
页数:27
相关论文
共 39 条
[11]   On some Simpson's and Newton's type of inequalities in multiplicative calculus with applications [J].
Chasreechai, Saowaluc ;
Ali, Muhammad Aamir ;
Naowarat, Surapol ;
Sitthiwirattham, Thanin ;
Nonlaopon, Kamsing .
AIMS MATHEMATICS, 2023, 8 (02) :3885-3896
[12]   Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals [J].
Du, Tingsong ;
Peng, Yu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
[13]   On the parameterized fractal integral inequalities and related applications [J].
Du, Tingsong ;
Yuan, Xiaoman .
CHAOS SOLITONS & FRACTALS, 2023, 170
[14]   Multiplicative Calculus in Biomedical Image Analysis [J].
Florack, Luc ;
van Assen, Hans .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2012, 42 (01) :64-75
[15]   Some inequalities for multiplicative tempered fractional integrals involving the λ-incomplete gamma functions [J].
Fu, Hao ;
Peng, Yu ;
Du, Tingsong .
AIMS MATHEMATICS, 2021, 6 (07) :7456-7478
[16]  
GC Women University Department of Mathematics Sialkot Pakistan, 2022, Mathematica, V64 (87), P95, DOI [10.24193/mathcluj.2022.1.11, DOI 10.24193/MATHCLUJ.2022.1.11]
[17]  
Grossman Michael., 1972, Non-Newtonian calculus
[18]   Some New Hermite-Hadamard Type Inequalities Pertaining to Generalized Multiplicative Fractional Integrals [J].
Kashuri, Artion ;
Sahoo, Soubhagya Kumar ;
Aljuaid, Munirah ;
Tariq, Muhammad ;
De La sen, Manuel .
SYMMETRY-BASEL, 2023, 15 (04)
[19]  
Kilbas A.A., 2006, THEORY APPL FRACTION, V204, DOI DOI 10.1016/S0304-0208(06)80001-0
[20]  
Meftah B., 2024, Sahand Commun. Math. Anal.