Improved Lower Bound for Online Strip Packing

被引:0
作者
Rolf Harren
Walter Kern
机构
[1] Max-Planck-Institut für Informatik (MPII),Department of Applied Mathematics
[2] University of Twente,undefined
来源
Theory of Computing Systems | 2015年 / 56卷
关键词
Strip packing; Rectangle packing; Online algorithms; Lower bounds;
D O I
暂无
中图分类号
学科分类号
摘要
We study the online strip packing problem and derive an improved lower bound of ρ≥2.589… for the competitive ratio of this problem. The construction is based on modified “Brown-Baker-Katseff sequences” (Brown et al. in Acta Inform. 18:207–225, 1982) using only two types of rectangles. In addition, we present an online algorithm with competitive ratio \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(3+\sqrt{5})/2 = 2.618\ldots$\end{document} for packing instances of this type.
引用
收藏
页码:41 / 72
页数:31
相关论文
共 21 条
  • [1] Brown D.J.(1982)Lower bounds for online two-dimensional packing algorithms Acta Inform. 18 207-225
  • [2] Baker B.S.(1980)Orthogonal packings in two dimensions SIAM J. Comput. 9 846-855
  • [3] Katseff H.P.(2009)A note on online strip packing J. Comb. Optim. 17 417-423
  • [4] Baker B.S.(1983)Shelf algorithms for two-dimensional packing problems SIAM J. Comput. 12 508-525
  • [5] Coffman E.G.(1997)Shelf algorithm for online strip packing Inf. Process. Lett. 63 171-175
  • [6] Rivest R.L.(2006)Scheduling parallel jobs to minimize the makespan J. Sched. 9 433-452
  • [7] Ye D.(2008)Online scheduling of parallel jobs on two machines is 2-competitive Oper. Res. Lett. 36 51-56
  • [8] Han X.(2012)A tight analysis of Brown-Baker-Katseff sequences for online strip packing J. Comb. Optim. 332 251-264
  • [9] Zhang G.(2005)Online matching on a line Theor. Comput. Sci. undefined undefined-undefined
  • [10] Baker B.S.(undefined)undefined undefined undefined undefined-undefined