The Inexact Newton-Like Method for Inverse Eigenvalue Problem

被引:0
作者
R. H. Chan
H. L. Chung
S.-F. Xu
机构
[1] Chinese University of Hong Kong,Department of Mathematics
[2] Peking University,School of Mathematical Sciences
来源
BIT Numerical Mathematics | 2003年 / 43卷
关键词
Nonlinear equations; Newton-like method; inverse eigenvalue problem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider using the inexact Newton-like method for solving inverse eigenvalue problem. This method can minimize the oversolving problem of Newton-like methods and hence improve the efficiency. We give the convergence analysis of the method, and provide numerical tests to illustrate the improvement over Newton-like methods.
引用
收藏
页码:7 / 20
页数:13
相关论文
共 50 条
[31]   A class of computationally efficient Newton-like methods with frozen inverse operator for nonlinear systems [J].
Sharma, Janak Raj ;
Kumar, Sunil .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (03) :1177-1195
[32]   Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces [J].
Parida, P. K. ;
Gupta, D. K. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :350-361
[33]   Simple yet efficient Newton-like method for systems of nonlinear equations [J].
Sharma, Janak Raj ;
Guha, Rangan K. .
CALCOLO, 2016, 53 (03) :451-473
[34]   Monotone convergence of Newton-like iteration for a structured nonlinear eigen-problem [J].
Guo, Pei -Chang ;
Gao, Shi-Chen ;
Yang, Yong-Qing .
APPLIED MATHEMATICS AND COMPUTATION, 2023, 437
[35]   A NEWTON-LIKE METHOD IN BANACH SPACES UNDER MILD DIFFERENTIABILITY CONDITIONS [J].
Gupta, Dharmendra K. ;
Parida, Pradip K. .
KODAI MATHEMATICAL JOURNAL, 2008, 31 (03) :414-430
[36]   Newton-MR: Inexact Newton Method with minimum residual sub-problem solver [J].
Roosta, Fred ;
Liu, Yang ;
Xu, Peng ;
Mahoney, Michael W. .
EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2022, 10
[37]   On the convergence rate of a quasi-Newton method for inverse eigenvalue problems [J].
Chan, RH ;
Xu, SF ;
Zhou, HM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (02) :436-441
[38]   An improved bisection Newton-like method for enclosing simple zeros of nonlinear equations [J].
Nisha S. ;
Parida P.K. .
SeMA Journal, 2015, 72 (1) :83-92
[40]   Historical developments in convergence analysis for Newton's and Newton-like methods [J].
Yamamoto, T .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 124 (1-2) :1-23