Multivariate Analysis for 1H-NMR Spectra of Two Hundred Kinds of Tea in the World

被引:0
作者
Masako Fujiwara
Itiro Ando
Kazunori Arifuku
机构
[1] JEOL DATUM LTD.,
[2] Environmental Research Center Ltd.,undefined
[3] National Institute of Advanced Industrial Science and Technology (AIST),undefined
来源
Analytical Sciences | 2006年 / 22卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
NMR measurements coupled with pattern-recognition analysis offer a powerful mixture-analysis tool for latent-feature extraction and sample classification. As fundamental applications of this analysis for mixtures, the 1H spectra of 176 kinds of green, black, oolong and other tea infusions were acquired by a 500 MHz NMR spectrometer. Each spectrum pattern was analyzed by a multivariate statistical pattern-recognition method where Principal Component Analysis (PCA) was used in combination with Soft Independent Modeling of Class Analogy (SIMCA). SIMCA effectively selected variables that contribute to tea categorization. The final PCA resulted in clear classification reflecting the fermentation and processing of each tea, and revealed marker variables that include catechin and theanine peaks.
引用
收藏
页码:1307 / 1314
页数:7
相关论文
共 123 条
[1]  
Nicholson J K(1999)undefined Xenobiotica 29 1181-undefined
[2]  
Lindon J C(1998)undefined NMR Biomed. 11 235-undefined
[3]  
Holmes E(2003)undefined Toxicol. Appl. Pharmcol. 186 137-undefined
[4]  
Holmes E(2005)undefined Anal. Sci. 21 1259-undefined
[5]  
Nicholls A W(2004)undefined J. Agric. Food Chem. 25 692-undefined
[6]  
Lindon C(1999)undefined Crop. Production Science in Horticulture Series 8 248-undefined
[7]  
Ramos S(1996)undefined J. Agric. Food Chem. 44 175-undefined
[8]  
Spraul M(2004)undefined J. Agric. Food Chem. 52 1031-undefined
[9]  
Neidig P(2003)undefined J. Agric. Food Chem. 51 120-undefined
[10]  
Connor S C(1985)undefined Anal. Chem. 75 2858-undefined