On the generating graph of direct powers of a simple group

被引:0
作者
Timothy C. Burness
Eleonora Crestani
机构
[1] University of Southampton,School of Mathematics
[2] Università degli Studi di Padova,Dipartimento di Matematica
来源
Journal of Algebraic Combinatorics | 2013年 / 38卷
关键词
Finite simple groups; Generating graph; Diameter; Spread;
D O I
暂无
中图分类号
学科分类号
摘要
Let S be a nonabelian finite simple group and let n be an integer such that the direct product Sn is 2-generated. Let Γ(Sn) be the generating graph of Sn and let Γn(S) be the graph obtained from Γ(Sn) by removing all isolated vertices. A recent result of Crestani and Lucchini states that Γn(S) is connected, and in this note we investigate its diameter. A deep theorem of Breuer, Guralnick and Kantor implies that diam(Γ1(S))=2, and we define Δ(S) to be the maximal n such that diam(Γn(S))=2. We prove that Δ(S)≥2 for all S, which is best possible since Δ(A5)=2, and we show that Δ(S) tends to infinity as |S| tends to infinity. Explicit upper and lower bounds are established for direct powers of alternating groups.
引用
收藏
页码:329 / 350
页数:21
相关论文
共 49 条
[1]  
Blackburn S.R.(2006)Sets of permutations that generate the symmetric group pairwise J. Comb. Theory, Ser. A 113 1572-1581
[2]  
Bosma W.(1997)The J. Symb. Comput. 24 235-265
[3]  
Cannon J.(1975) algebra system I: the user language Mich. Math. J. 22 53-64
[4]  
Playoust C.(2008)Two-generator groups I J. Algebra 320 443-494
[5]  
Brenner J.L.(2010)Probabilistic generation of finite simple groups, II Bull. Lond. Math. Soc. 42 621-633
[6]  
Wiegold J.(2008)Hamiltonian cycles in the generating graph of finite groups J. Comb. Theory, Ser. A 115 442-465
[7]  
Breuer T.(2007)Sets of element that pairwise generate a linear group J. Algebra 309 80-138
[8]  
Guralnick R.M.(1968)Fixed point ratios in actions of finite classical groups, II J. Algebra 9 190-211
[9]  
Kantor W.M.(2012)The conjugate classes of Chevalley groups of type ( J. Alg. Combin. 303 39-70
[10]  
Breuer T.(1987)) Trans. Am. Math. Soc. 110 199-205