Congruences for 7 and 49-regular partitions modulo powers of 7

被引:0
作者
Chandrashekar Adiga
Ranganatha Dasappa
机构
[1] University of Mysore,Department of Studies in Mathematics
来源
The Ramanujan Journal | 2018年 / 46卷
关键词
Congruences; Partitions; -Regular partitions; 05A15; 05A17; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
Let bk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{k}(n)$$\end{document} denote the number of k-regular partitions of n. In this paper, we prove Ramanujan-type congruences modulo powers of 7 for b7(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{7}(n)$$\end{document} and b49(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_{49}(n)$$\end{document}. For example, for all j≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\ge 1$$\end{document} and n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 0$$\end{document}, we prove that b7(72j-1n+3·72j-1-14)≡0(mod7j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} b_{7}\Bigg (7^{2j-1}n+\frac{3\cdot 7^{2j-1}-1}{4}\Bigg )\equiv 0\pmod {7^{j}} \end{aligned}$$\end{document}and b49(7jn+7j-2)≡0(mod7j).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} b_{49}\Big (7^{j}n+7^{j}-2\Big )\equiv 0\pmod {7^{j}}. \end{aligned}$$\end{document}
引用
收藏
页码:821 / 833
页数:12
相关论文
共 37 条
[1]  
Ahmed Z(2016)New congruences for Ramanujan J. 40 649-668
[2]  
Baruah ND(1967)-regular partitions for Glasg. Math. J. 8 14-32
[3]  
Atkin AOL(2015)Proof of a conjecture of Ramanujan Int. J. Number Theory 11 2221-2238
[4]  
Baruah ND(2016)Parity results for Bull. Aust. Math. Soc. 93 410-419
[5]  
Das K(2008)-regular and Integers 8 A60-523
[6]  
Boll E(1934)-regular partitions J. Lond. Math. Soc. 9 247-512
[7]  
Penniston D(2013)The Adv. Appl. Math. 51 507-70
[8]  
Calkin N(2015)-regular and Ramanujan J. 38 503-108
[9]  
Drake N(2009)-regular partition functions modulo Ramanujan J. 19 63-334
[10]  
James K(2012)Divisibility properties of the 5-regular and 13-regular partition functions Ramanujan J. 27 101-17