Local holomorphic isometries of a modified projective space into a standard projective space; rational conformal factors

被引:0
作者
Peter Ebenfelt
机构
[1] University of California at San Diego,Department of Mathematics
来源
Mathematische Annalen | 2015年 / 363卷
关键词
Holomorphic Mapping; Projective Space; Conformal Factor; Hermitian Function; Polyharmonic Function;
D O I
暂无
中图分类号
学科分类号
摘要
We consider local modifications ωn+f∗ωd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _n+f^*\omega _d$$\end{document} of the Fubini-Study metric (with associated (1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,1)$$\end{document}-form ωn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _n$$\end{document}) on an open subset Ω⊂CPn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb C\mathbb P^n$$\end{document} induced by a local holomorphic mapping f:Ω→Pd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\Omega \rightarrow \mathbb P^d$$\end{document}. Our main result is that there are “gaps” in potential dimensions m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} such that the modification can be obtained as h∗ωm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^*\omega _m$$\end{document} for some local holomorphic mapping h:Ω→CPm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h:\Omega \rightarrow \mathbb C\mathbb P^m$$\end{document}. We also consider the case of rational conformal factors.
引用
收藏
页码:1333 / 1348
页数:15
相关论文
共 9 条
[1]  
Calabi E(1953)Isometric imbedding of complex manifolds Ann. Math. 2 1-23
[2]  
Catlin DW(1997)Positivity conditions for bihomogeneous polynomials Math. Res. Lett. 4 555-567
[3]  
D’Angelo JP(1999)An isometric imbedding theorem for holomorphic bundles Math. Res. Lett. 6 43-60
[4]  
Catlin DW(2011)Hermitian analogues of Hilbert’s 17-th problem Adv. Math. 226 4607-4637
[5]  
D’Angelo JP(2004)Positivity conditions for Hermitian symmetric functions Asian J. Math. 8 215-231
[6]  
D’Angelo JP(1999)On a linearity problem for proper holomorphic maps between balls in complex spaces of different dimensions J. Differ. Geom. 51 13-33
[7]  
D’Angelo JP(undefined)undefined undefined undefined undefined-undefined
[8]  
Varolin D(undefined)undefined undefined undefined undefined-undefined
[9]  
Huang X(undefined)undefined undefined undefined undefined-undefined