A characterization of solubility of finite groups

被引:0
作者
Jinbao Li
Dapeng Yu
机构
[1] Chongqing University of Arts and Sciences,Department of Mathematics and Chongqing Key Laboratory of GGTA
来源
Monatshefte für Mathematik | 2019年 / 189卷
关键词
Finite groups; Maximal subgroups; Solubility; 20D05; 20D10;
D O I
暂无
中图分类号
学科分类号
摘要
A subgroup H of a group G is said to be G-semipermutable in G if H has a supplement T in G such that G=HT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=HT$$\end{document} and for every subgroup T1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_1$$\end{document} of T, HT1g=T1gH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HT_1^g=T_1^gH$$\end{document} for some element g in G. In this paper, we investigate the structure of G under the assumption that a soluble maximal subgroup of G is G-semipermutable in G.
引用
收藏
页码:691 / 694
页数:3
相关论文
共 8 条
[1]  
Guo WB(2007)-semipermutable subgroups of finite groups J. Algebra 315 31-41
[2]  
Shum KP(1983)Subgroups of prime power index in a simple group J. Algebra 81 304-311
[3]  
Skiba AN(2008)New characterizations of finite supersoluble groups Sci. China Ser. A Math. 51 827-841
[4]  
Guralnick RT(2009)The influence of Sci China Ser A Math. 52 261-271
[5]  
Li BJ(undefined)-semipermutability of subgroups on the structure of finite groups undefined undefined undefined-undefined
[6]  
Skiba AN(undefined)undefined undefined undefined undefined-undefined
[7]  
Li JB(undefined)undefined undefined undefined undefined-undefined
[8]  
Chen GY(undefined)undefined undefined undefined undefined-undefined